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In this paper, we introduce the Flux Coupling Finder (FCF) framework for elucidating the topological and flux
connectivity features of genome-scale metabolic networks. The framework is demonstrated on genome-scale
metabolic reconstructions of Helicobacter pylori, Escherichia coli, and Saccharomyces cerevisiae. The analysis allows one to
determine whether any two metabolic fluxes, v1 and v2, are (1) directionally coupled, if a non-zero flux for v1 implies a
non-zero flux for v2 but not necessarily the reverse; (2) partially coupled, if a non-zero flux for v1 implies a non-zero,
though variable, flux for v2 and vice versa; or (3) fully coupled, if a non-zero flux for v1 implies not only a non-zero
but also a fixed flux for v2 and vice versa. Flux coupling analysis also enables the global identification of blocked
reactions, which are all reactions incapable of carrying flux under a certain condition; equivalent knockouts, defined
as the set of all possible reactions whose deletion forces the flux through a particular reaction to zero; and sets of
affected reactions denoting all reactions whose fluxes are forced to zero if a particular reaction is deleted. The FCF
approach thus provides a novel and versatile tool for aiding metabolic reconstructions and guiding genetic
manipulations.

[Supplemental material is available online at www.genome.org.]

An overarching attribute of metabolic networks is their inherent
robustness and ability to cope with ever-changing environmen-
tal conditions. Despite this flexibility, network stoichiometry
and connectivity do establish limits/barriers to the coordination
and accessibility of reactions. The recent abundance of complete
genome sequences has enabled the generation of genome-scale
metabolic reconstructions for various microorganisms (Covert et
al. 2001; Price et al. 2003; Reed and Palsson 2003). These models
provide a largely complete skeleton of the metabolic reactions
present in an organism. Examination of the structural and topo-
logical properties of metabolic networks is important at both the
conceptual level, to reveal the organizational principles of meta-
bolic interactions within cellular networks, and at the practical
level for more effectively focusing engineering interventions and
ensuring the consistency of the underlying reconstructions.

To this end, the identification of blocked reactions (i.e., re-
actions incapable of carrying flux due to the stoichiometry of the
metabolic network under steady-state conditions) and enzyme
subsets (i.e., groups of reactions that operate together in fixed
flux proportions under steady-state conditions) in metabolic
models has attracted considerable interest in recent years
(Kholodenko et al. 1995; Rohwer et al. 1996; Pfeiffer et al. 1999;
Klamt et al. 2003). The output of these analyses provides signifi-
cant biological insight as to which reactions are potentially miss-
ing from metabolic models, as well as which reactions may be
under coordinated regulation, alluding to a mechanism for the
continuous refinement of metabolic reconstructions through an
iterative model-building process. Specifically, stoichiometric
models of Escherichia coli metabolism utilized within the flux
balance analysis (FBA) framework have been used for (1) quali-

tatively predicting the outcomes of gene knockout experiments
(Edwards and Palsson 2000; Badarinarayana et al. 2001); (2) iden-
tifying the correct sequence of byproduct secretion under in-
creasingly anaerobic conditions (Varma et al. 1993); (3) quanti-
tatively predicting cellular growth rates (Edwards et al. 2001;
Ibarra et al. 2002); (4) assessing the performance limits of meta-
bolic networks in response to gene additions or deletions (Bur-
gard and Maranas 2001); and (5) suggesting gene knockout strat-
egies for enhancing biochemical production (Burgard et al. 2003;
Pharkya et al. 2004).

In the postgenomic era, each cellular function, biological
entity, or physiological event is seen in the context of a complex
network of interactions. Following this spirit, several frameworks
for examining structural and topological network properties
based on convex analysis have been developed and demon-
strated for small-scale metabolic representations (∼100 reactions)
to identify extreme pathways (Schilling et al. 2000) or elementary
modes (Schuster and Hilgetag 1994; Schuster et al. 2000). An
elementary mode refers to a minimal set of enzymes that could
operate under steady-state conditions. Any feasible flux distribu-
tion can be represented by a nonnegative linear combination of
elementary modes. Elementary mode analysis is often used as a
quantitative measure of network robustness, as more elementary
modes for a given environmental condition and organism hint at
a more flexible metabolism (Stelling et al. 2002). This concept
has proven effective in the rational strain design for poly-�-
hydroxybutyrate production in Saccaromyces cerevisiae by quan-
tifying the additional flexibility gained by the addition of a non-
native transhydrogenase reaction (Carlson et al. 2002). Corre-
spondingly, the set of extreme pathways refers to the minimum
set of flux vectors capable of describing all steady-state flux dis-
tributions and are consequently a subset of elementary modes
(Schilling et al. 2000). As with elementary modes, the number of
extreme pathways provides a measure of pathway redundancy.
The application of extreme pathway analysis has revealed that
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the Haemophilus influenzae network has an order of magnitude
larger degree of pathway redundancy for amino acid production
compared to Helicobacter pylori (Papin et al. 2002; Price et al.
2002). For more details, Klamt and Stelling (2003) and Palsson et
al. (2003) provide reviews of the similarities, differences, and ap-
plicability of elementary mode analysis and extreme pathway
analysis.

However elegant, all existing algorithms for the exhaustive
identification of elementary modes and extreme pathways do
not scale well for genome-scale models of complex microorgan-
isms, due to the combinatorial explosion of the identified path-
ways (Klamt and Stelling 2002). For example, although the cen-
tral metabolic network utilized by Stelling et al. (2002) contained
only 110 reactions, it gave rise to 43,279 elementary modes. Simi-
larly, although a small example involving 20 reactions contained
only 80 extreme pathways (Covert and Palsson 2003), the H.
influenzae metabolic network contained over 1000 extreme path-
ways even after its a priori breakup into six distinct metabolic
subsystems (Schilling and Palsson 2000).

Here we introduce the Flux Coupling Finder (FCF) procedure
for finding coupled reaction sets and blocked reactions in
genome-scale metabolic systems. Whereas previous algorithms
require the computation of null-space matrices (Heinrich
and Schuster 1996; Pfeiffer et al. 1999), a computationally pro-
hibitive task for large networks (Golub and Van Loan 1996), the
approach proposed here circumvents this challenge by requiring
instead the solution of a sequence of linear programs (LPs). The
set of blocked reactions for a given network is identified by maxi-
mizing each particular flux subject to the network stoichiometry.
If the maximum possible value of a particular flux is zero, then
the reaction is said to be unusable or blocked because it cannot
carry any flux. Similarly, linear fractional programming is
employed to identify the maximum and minimum flux ratios
(i.e., max v1/v2, min v1/v2) for every pair of metabolic fluxes.
Comparison of flux ratios allows one to determine whether any
two fluxes, v1 and v2, share any of the following types of cou-
pling:

(1) Directional coupling (v1 → v2), if a non-zero flux for v1
implies a non-zero flux for v2 but not necessarily the reverse.

(2) Partial coupling (v1 ↔ v2), if a non-zero flux for v1 implies
a non-zero, though variable, flux for v2 and vice versa.

(3) Full coupling (v1 ⇔ v2), if a non-zero flux for v1 implies not
only a non-zero but also a fixed flux for v2 and vice versa
(Fig. 1).

Reaction pairs not falling into one of these categories are classi-
fied as uncoupled. Reactions which are mutually partially and/or
fully coupled to one another are grouped into coupled reaction
sets. The identification of directionally and partially coupled re-
actions in addition to fully coupled reactions implies that the
FCF method is not only more tractable but also more encompass-
ing than previously described algorithms for enzyme subset iden-
tification. The proposed procedure is versatile enough to allow
the incorporation of additional constraints (e.g., oxygen uptake
limitations and/or substrate restrictions) or performance require-
ments (e.g., minimum levels of ATP and/or biomass production)
during the calculation of blocked and/or coupled reactions. The
mathematical frameworks for identifying the maximum and
minimum flux ratios and blocked reactions are described next,
followed by their application to the following genome-scale stoi-
chiometric models of increasing size and complexity: (1) H. pylori
(Schilling et al. 2002; 389 reactions); (2) E. coli (Edwards and
Palsson 2000; 740 reactions); and (3) S. cerevisiae (Forster et al.
2003; 1173 reactions).

METHODS

Blocked Reactions
Blocked reactions are defined as reactions incapable of carrying
flux under steady-state conditions. Here we identify blocked re-
actions by identifying fluxes whose maximum and minimum
values are zero for a particular uptake scenario. The maximiza-
tion of a particular flux vj for a steady-state metabolic network
comprised of a set N = {1,…,N} of metabolites and a set M = {1,…,
M} of reactions is expressed mathematically as the following lin-
ear program (LP),

maximize vj ( 1 )

subject to �
j = 1

M

Sijvj = 0, � i ∈ N ( 2 )

vj
uptake � vj

uptake_max, � j ∈ Mtransport ( 3 )

vj � 0, � j ∈ M ( 4 )

where Sij is the stoichiometric coefficient of metabolite i in reac-
tion j. Reversible reactions are expressed as two irreversible reac-
tions in opposite directions (i.e., vj = vj

f � vj
b), thus constraining

all fluxes to positive values. The optimization problem can be
easily modified to examine not only the effects of changing
which metabolites are internal or external, but more specifically
changing which metabolites can be taken up, secreted, or both.
Constraint (3) limits the uptake of resources (i.e., carbon, oxygen,
etc.) to the network, and the maximum uptake of any metabolite
absent from the external medium is set to zero. Transport mecha-
nisms for metabolites out of the cell can be blocked by changing
the inequality in constraint (4) to an equality. All isozymes cata-
lyzing a given reaction are lumped into a single flux, eliminating
duplicate reactions. The set of blocked reactions is identified by
solving the above linear programming problem once for every
flux. If the maximum value of the flux is zero, then the reaction
is said to be unusable or blocked. Examples of blocked reactions

Figure 1 Two reaction fluxes are (1) directionally coupled if the activity
of one flux implies the activity of the other without the converse neces-
sarily holding true, (2) partially coupled if the activity of one flux implies
the activity of the other and vice versa, or (3) fully coupled if activity of
one flux fixes the activity of the other. Reactions in enzyme subsets as
defined by Pfeiffer et al. (1999) are exclusively fully coupled. Various types
of coupling are related to the flux ratio limits Rmin and Rmax as shown.
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are provided in Figure 2. The identified blocked reactions may
have either biological meaning, such as the reaction being a part
of an incomplete pathway at an intermediate stage of evolution,
or they could signify errors/omissions in the metabolic recon-
struction. It is important to note that the results depend upon
the (1) steady-state assumption, (2) imposed uptake/secretion
scenarios, (3) growth requirements, and (4) energy production
requirements.

Coupled Reactions
The identification of all coupled reactions and corresponding
coupled reaction sets hinges upon the calculation of the upper
and lower limits of all flux ratios (i.e., Rmax = max v1/v2,
Rmin = min v1/v2). Note that the calculation of these ratios origi-
nally gives rise to nonlinear optimization problems. However, by
performing the variable transformation (v� = v · t) inspired by
fractional programming, a completely equivalent (see Appendix
A for proof) linear programming formulation is obtained whose
solution time is on the order of milliseconds.

maximize Rmax = �v1 or �minimize Rmin = �v1�

subject to �
j = 1

M

Sij �vj = 0, � i ∈ N

�v2 = 1

�v j
uptake � v j

uptake_max � t, � j ∈ Mtransport

�vj � 0, � j ∈ M

t � 0

Here the variables v� are the metabolic fluxes normalized by v2.
The above linear program has a clear biological interpretation in
terms of responses of metabolic networks to the perturbation of
particular fluxes. Constraint v� 2 = 1 sets a reference flux to a unit
value, whereas the optimization criteria are used to probe flux
variability for each tested reaction. Uncoupled fluxes do not
“feel” flux perturbations, whereas fluxes through coupled reac-
tions decrease or increase in accordance with the encountered
type of coupling. This formulation is guaranteed to obtain glo-
bally optimal values for the flux ratios, because it relies on linear
programming.

The various outcomes for the maximum and minimum flux
ratios are depicted in Figure 1. The first case occurs whenever Rmin

is equal to zero and Rmax is equal to some finite value c. The fluxes
are directionally coupled (v1 → v2) because the activity of v1 im-
plies v2 (i.e., v2 � v1/c). Similarly, if Rmin is equal to a finite con-
stant c and Rmax is unbounded, then the fluxes are directionally
coupled in the opposite direction (v2 → v1), as v2 implies v1 (i.e.,
v1 � v2 · c). Two fluxes can also be partially coupled (v1 ↔ v2) if
Rmax and Rmin are both finite and unequal, or fully coupled
(v1 ⇔ v2) if Rmax is finite and equal to Rmin. The final case occurs
whenever the two fluxes are completely uncoupled and is en-
countered if their ratio can vary freely from zero to infinity.

Figure 2 shows an example of a fully coupled reaction set.
Note that because the partial and/or full coupling of reactions is
a transitive property (i.e., v1 ↔ v2 and v2 ↔ v3 imply that
v1 ↔ v3), complete coupled reaction sets can be subsequently in-
ferred from the maximum and minimum flux ratios. Directional
coupling, unlike partial and full coupling, can capture the one-
way type of connectivity between metabolic reactions. This in-
formation enables the global identification of equivalent knock-
outs defined as the set of all possible reactions whose deletion
forces the flux through a particular reaction to zero, and sets of
affected reactions defined as all reactions whose fluxes are forced
to zero if a particular reaction is deleted. These concepts are il-
lustrated in Figure 3 where the reactions v1, v2, and v3 all imply
reaction v*. This means that if any of these fluxes assumes a
non-zero value, then v* must also attain a non-zero value. There-
fore, knocking out reaction v* from the network forces the fluxes
through reactions v1, v2, and v3 to zero. Thus, we refer to reac-
tions v1, v2, and v3 as the set of reactions affected by the removal
of v*. Similarly, a non-zero flux through v* implies that the fluxes
through v4, v5, and v6 are also non-zero. This means that remov-
ing any of v4, v5, or v6 from the network forces the flux through
v* to zero. Reactions v4, v5, and v6 are thus referred to as equivalent
knockouts for v*. Note that although the sets of reactions affected
by each of the equivalent knockouts may differ, the directional-
ity of coupling for partially/fully coupled reactions remains the
same.

Flux Coupling Finder (FCF) Procedure
Although the identification of all blocked and coupled reactions
by inspection is possible for small networks such as the one
shown in Figure 2, exhaustively identifying blocked and coupled
reactions in genome-scale metabolic models requires a rigorous
computational procedure. The developed FCF procedure for
identifying both blocked and coupled reactions is summarized in
pseudo-code as follows:

Figure 2 Examples of blocked reactions (dashed lines) and a fully
coupled enzyme subset (heavy lines). Flux v4 is blocked due to the ab-
sence of a reaction consuming metabolite H, whereas v9 and v10 are
blocked because there are no reactions forming I or consuming K. Note,
however, that v4 can carry flux if metabolite H is allowed to accumulate
(i.e., unsteady-state). Assuming that the biomass composition is prespeci-
fied, knowledge of any flux in the enzyme subset confers the values of all
other fluxes in that subset. For example, if v5 is fixed, then v6 and vbio are
also fixed, as they are the only outlets for the flux towards metabolites C
and F, respectively. Similarly, fluxes v7 and vE are fixed as a consequence
of fixing vbio and v6.

Figure 3 Examples of affected reaction sets and equivalent knockouts
for reaction v*. Removing v* from the network results in reaction fluxes v1,
v2, and v3 being forced equal to zero at steady-state, and thus they are
referred to as affected by v*. Removing any of v4, v5, or v6 ensures that v*
cannot carry flux at steady-state, so they are said to be equivalent knock-
outs for v*.

Flux Coupling Analysis of Genome-Scale Networks
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Step 1. Aggregate all isozymes (i.e., duplicate reactions)
from the stoichiometric matrix Sij.

Step 2. For (j = 1 to M),
Solve for the maximum value of each flux vj.
If vj

max = 0, then the reaction is blocked. Col-
umn j is removed from Sij.

End
Step 3. Set AlreadyCoupled(j) = 0.
Step 4. For (j = 1 to M � 1) and AlreadyCoupled(j) = 0,

For (j� = j + 1 to M),
Solve for Rmin and Rmax (i.e., the minimum and
maximum ratios of vj/v�j ).
A. If Rmin = 0 and Rmax is unbounded, then the

reactions are uncoupled.
B. If Rmin = 0 and Rmax = c > 0, then (vj → v�j ).
C. If Rmin = c1 > 0 and Rmax = c2 > 0, then

a. If (c2 � c1) > 0, then (vj ↔ vj
�).

b. If (c2 � c1) = 0, then (vj ⇔ v�j ).
Set AlreadyCoupled(j�) = 1.
Reactions j and j� belong to the same coupled
reaction set.
All subsequent partially/fully coupled reactions
j� are added to the coupled reaction set.

D. If Rmin = c > 0 and Rmax is unbounded, then
(v�j → vj).

End
End

The array AlreadyCoupled(j) enables the outer loop of Step 4
to skip reactions that have already been found to be a part of a
coupled reaction set. All reactions in the same coupled reaction
set have identical coupling properties. Computational require-
ments are on the order of minutes for genome-scale models in-
volving as many as 1173 reactions upon implementing the FCF
procedure utilizing LINDO (Lindo Systems) accessed via C++ on
an Intel Pentium IV, 2.4-GHz, 512-MB RAM computer. Note that
the FCF procedure substantially reduces the number of reaction
ratios to be calculated, by employing a number of key tests as
described above. Typically, only 10%–45% of potential reaction
pairs needs to be examined.

RESULTS

Blocked Reactions
Here we examine the percentage of blocked reactions in the ge-
nome-scale models of H. pylori (389 reactions; Schilling et al.
2002), E. coli (740 reactions; Edwards and Palsson 2000), and S.
cerevisiae (1173 reactions; Forster et al. 2003). For each one of
them, five separate scenarios are explored to examine the effect
of varied external/internal conditions on the number of poten-
tially active fluxes in the models. First, any metabolite is allowed
to enter or leave the metabolic network, provided that there ex-
ists a corresponding transport mechanism into or out of the cell
for that metabolite (i.e., Complex Media/Aerobic). Reactions
blocked under this assumption are unconditionally blocked and
cannot be active under any set of conditions. Second, aerobic
growth on a glucose-minimal medium is explored (i.e., Glucose/
Aerobic). For this condition, the uptake of any carbon source
other than what is required for growth on glucose is not allowed.
Next, we further constrain the second scenario by setting the
oxygen uptake to zero (i.e., Glucose/Anaerobic). Likewise, the
fourth and fifth scenarios are identical to the second and third
except that we enforce that the network apportions its fluxes to
maximize the biomass yield (i.e., Optimal Glucose/Aerobic and
Optimal Glucose/Anaerobic). Reactions that are blocked under
any of the last four conditions but can carry flux under the first
condition are referred to as conditionally blocked.

The total numbers and percentages of blocked reactions in
each model are summarized in Figure 4. As expected, the per-
centage of blocked reactions increases as more constraints/
conditions are imposed on the three network models. For the E.
coli metabolic network (Edwards and Palsson 2000), we find that
14% of the 740 reactions are blocked under any condition (i.e.,
all metabolites with a transport mechanism into or out of the cell
can be consumed or secreted, respectively), whereas 28% are
blocked for aerobic growth on a glucose-minimal medium. Re-
stricting the oxygen uptake to zero blocks only a few additional
reactions (i.e., the oxygen uptake reaction and cytochrome oxi-
dases) for growth on glucose. For both aerobic and anaerobic
growth on glucose, about 55% of the E. coli reactions are found to
be incapable of carrying any flux if the network is to attain the
maximum biomass yield on a glucose-minimal medium. Nota-
bly, enforcing biomass maximization reveals distinct differences
between aerobic and anaerobic E. coli metabolism. Specifically,
optimal anaerobic growth requires that the 2-ketoglutarate de-
hydrogenase reaction is blocked, preventing the cyclic operation
of the TCA cycle. In addition, optimal aerobic growth prevents
the activity of reactions involved in fermentation product for-
mation such as pyruvate formate lyase (i.e., formate production)
and acetaldehyde dehydrogenase (i.e., ethanol production), in
contrast to optimal anaerobic growth.

For the yeast model (Forster et al. 2003), a much larger per-
centage of reactions are blocked under all examined scenarios.
Many more reactions are blocked under anaerobic conditions
than aerobic conditions for both growth on glucose and optimal
growth on glucose. This is due to the large number of yeast re-
actions utilizing oxygen as a substrate, particularly in ergosterol
and zymosterol synthesis, which are biomass constituents for
yeast but not E. coli. Finally, for H. pylori, far fewer reactions are
blocked compared to the E. coli and S. cerevisiae networks, imply-
ing a much more compact and largely essential network. The

Figure 4 Total numbers and percentages of blocked reactions for the
three networks under different growth conditions.
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complete lists of reactions blocked under the examined condi-
tions are available upon request.

Coupled Reaction Sets
In this section, we identify all coupled sets of reactions for the
three metabolic networks. First, coupled reaction sets are identi-
fied assuming a biomass reaction exists for draining the set of
compounds necessary for cell growth in their prespecified bio-
logical ratios. This aggregate biomass reaction description im-
poses a constant biomass composition. We then relax the con-
stant biomass composition assumption by removing the central-
ized biomass drain from each metabolic network while allowing
all biomass components to be drained independently of one an-
other. The biomass components are slightly different for the
three stoichiometric models (Edwards and Palsson 2000; Schill-
ing et al. 2002; Forster et al. 2003), although they all include
similar lists of amino acids, cofactors, currency metabolites, etc.
True cellular behavior is bound to reside between the two ex-
tremes of a fixed biomass composition and uncontrolled biomass
component draining. For each case, we investigated two distinct
uptake scenarios: (1) only glucose can be taken up in addition to
all essential growth resources (i.e., glucose-minimal media), and
(2) any metabolites with a transport mechanism into the cell can
be consumed (i.e., complex media). Reactions that are coupled
for the most general case (i.e., complex media uptake environ-
ment, no biomass reaction) are coupled under any set of condi-
tions. For H. pylori, the glucose-minimal medium consisted of
glucose, alanine, arginine, histidine, isoleucine, methionine,

phenylalanine, valine, thiamine, phosphate, oxygen, and sulfate
as determined by Schilling et al. (2002). For E. coli and S. cerevi-
siae, the glucose-minimal medium was comprised of glucose, sul-
fate, nitrate, phosphate, and oxygen. For S. cerevisiae, the biomass
components, ergosterol and zymosterol, were also included in
the glucose-minimal medium under anaerobic conditions, as the
model lacks the pathways necessary to synthesize these com-
pounds in the absence of oxygen.

Genome-Scale Identification of Coupled Reaction Sets
The numbers of coupled reaction sets for each organism under
the different conditions are provided in Table 1. These entries
denote the total numbers of both partially or fully coupled reac-
tions in each set. The complete lists of coupled reaction sets are
available upon request. For all cases, we found that a much
higher percentage of reactions are members of coupled sets in H.
pylori than for the larger and more complex E. coli and S. cerevisiae
networks (Fig. 5), alluding to a much more flexible metabolism in
the larger networks. Additionally, we found that a constant bio-
mass composition leads to the generation of one large coupled
reaction set. Thus, if the biomass composition is fixed, the fluxes
through tens of reactions are “locked” due to stoichiometry. In
fact, the biomass-coupled reaction set of H. pylori comprises 38%
and 46% of the entire network for the complex and glucose-
minimal media, respectively. Also, the size of this biomass-
coupled reaction set is much larger for H. pylori than for E. coli
and S. cerevisiae, as increasing network redundancy leads to the
decoupling of reactions from the large biomass-coupled reaction
set. Note that although the coupled reaction sets include both
partially and fully coupled reactions, the reactions comprising
the biomass reaction sets are almost exclusively fully coupled. In
addition, the handful of partially coupled reactions can vary only
within tight ranges.

Coupled Reaction Set Example: Purine Biosynthesis in E. coli
A representative example of the information gained from flux
coupling analysis is shown in Figure 6 with a coupled reaction set
for E. coli purine biosynthesis. This reaction set is identified for
aerobic growth on a glucose-minimal medium assuming a con-
stant biomass composition. Here the concepts of partially
coupled, fully coupled, and uncoupled reactions can be more
clearly discerned. The numbers indicate the relative values or
range of values for each flux in any particular flux distribution for
the examined conditions. The FCF framework identifies 10
coupled reactions, eight fully coupled and two partially coupled.
This coupled reaction set encompasses two multigene operons:
purDH (three reactions with EC#’s 6.3.4.13, 2.1.2.3, and 3.5.4.10)
and purEK (two reactions with EC# 4.1.1.21). The two reactions
converting AICAR to IMP are partially coupled to the rest of the
reaction set, because AICAR is also formed during histidine bio-
synthesis. Therefore the partially coupled reactions can assume
values slightly greater than the eight fully coupled reactions. If

we relax the constant biomass composition
assumption, the coupled reaction set is
“broken up” into two fully coupled reaction
sets of two and eight reactions, respectively.
Interestingly, the two reactions capable of
converting GAR to FGAR are not a part of
this coupled reaction set, because they de-
couple one another by offering alternative
conversion routes. However, the sum of
their fluxes is coupled to the rest of the re-
action set. Also, both fluxes are direction-
ally coupled to the other reactions, because
a non-zero flux through either one implies
that the coupled reaction set carries flux.

Figure 5 Percentage of reactions contained in coupled sets in the H.
pylori, E. coli, and S. cerevisiae metabolic networks for growth on either a
complex or glucose-minimal medium (with and without a biomass reac-
tion).

Figure 6 Coupled reaction set identified for purine biosynthesis in E. coli on a glucose-minimal
medium, assuming a constant biomass composition. The numbers indicate the relative values or
range of values for each flux in any particular flux distribution for given growth condition. Sec-
ondary metabolites and cofactors are omitted for simplicity.
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Biomass Formation Coupled Reaction Sets
In all cases, the biomass-coupled reaction sets were broken up
into smaller sets whenever the biomass reaction was replaced by
independent drains of biomass precursors. This decomposition is

expected given that allowing biomass constituents to be drained
(i.e., allowing them to become external metabolites) adds degrees
of freedom to the network, leading to the uncoupling of reaction
sets. Note that considering certain highly connected metabolites

Figure 7 Reactions coupled to biomass formation for aerobic S. cerevisiae growth on a glucose-minimal medium. Secondary metabolites and cofactors
are omitted for simplicity. All reactions are fully coupled, meaning that knowledge of one reaction flux is sufficient to specify the flux through all reactions
at steady-state. Note that PAP is converted to AMP, which is a precursor to biomass. This enzyme subset is decomposed into numerous subsystems,
indicated by different colored arrows, if the biomass reaction is replaced with drains on the various biomass precursors.

Figure 8 Comparison of the FCF-identified coupled reaction sets for H. pylori with the enzyme subsets identified by Schilling et al. (2002). The latter
approach subdivides the network into six smaller subnetworks based on functional classification, and finds subsets for each one of them. The FCF
procedure considers the network in its entirety. The reaction names in each row correspond to different coupled reaction sets. Underlined reactions
highlight coupling relationships identified only using the FCF method, and the two arrows indicate the coupling of enzyme subsets across functional
classifications. Reaction abbreviations can be found in the supplemental material of Schilling et al. (2002).
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(e.g., ATP, NADH, etc.) as external helps to decompose large
metabolic networks into smaller subsystems for elementary
mode analysis (Schuster et al. 2002).

The decomposition of the yeast biomass-coupled reaction
set is shown in Figure 7. It is comprised of 34 reactions (including
the biomass reaction) for growth on glucose. When the biomass
reaction was removed and replaced with biomass component
drains which could operate independently of one another, the
34-reaction set was decomposed into one five-, 17-, and two-
member reaction sets as well as two three-member reaction sets.
The biomass sets for E. coli and H. pylori undergo similar frag-
mentations as the biomass reaction are removed from the mod-
els. However, even though the coupled reaction sets are de-
coupled under uncontrolled biomass component draining, they
are indeed linked to one another based on the cell’s requirement
to provide itself with biomass constituents for growth.

Genome-Scale Versus Subsystem-Based Coupling Analysis
A key advantage of the FCF framework over previous methods is
that it does not require the a priori decoupling of the metabolic
network into subsystems for analysis. For example, enzyme sub-
set identification for the H. pylori model performed by Schilling
et al. (2002) using extreme pathway analysis required breaking
the network into six metabolic subsystems: (1) amino acid bio-
synthesis and degradation, (2) central metabolism, (3) lipid and
cell envelope biosynthesis, (4) nucleotide biosynthesis and deg-
radation, (5) transport and energy-redox metabolism, and (6) vi-

tamin and cofactor biosynthesis. Forty-nine fully coupled en-
zyme subsets were identified spanning the six subsystems. That
study corresponds exactly to our H. pylori complex medium case
without the presence of a biomass reaction. A complete compari-
son of the coupled reaction sets identified using FCF with the
enzyme subsets identified by Schilling et al. (2002) is shown in
Figure 8. In addition to reproducing the enzyme subsets of Schill-
ing et al. (2002), flux coupling analysis reveals additional infor-
mation about the coupling of enzymes across the putative func-
tional classifications. For example, the (GLCD, GLLDHR, KATA)
transport subset is fully coupled with the (FOLE, DNTPH,
DHPPH, FOLB, FOLK, PABB, PABC, FOLP, FOLC) vitamin and
cofactor subset. Also, fully coupled with this reaction set is the
ACEB reaction from central metabolism, bringing the total num-
ber of coupled reactions in this set to 13. Thus, breaking the
metabolic network into subsystems often leads to reactions being
missed during enzyme subset identification. Entire enzyme sub-
sets can also be missed if they are comprised of no more than one
reaction from each subsystem. One such example is the enzyme
subset of OOR_ and FRDO, which is comprised of one reaction
from central metabolism and one reaction from transport and
energy-redox metabolism, respectively. The results demonstrate
the importance of investigating metabolism at the genome-scale,
as many connections between seemingly unrelated subsystems
are uncovered.

Directional Coupling
In the previous section, we focused on partially and fully coupled
flux pairs. Here we highlight results for directional coupling,
where a non-zero flux through certain reactions implies non-zero
fluxes through others but not necessarily the reverse. First, we
utilized the FCF procedure to detect coupled reaction sets, af-
fected reactions, and equivalent knockouts in E. coli central me-
tabolism for aerobic growth on glucose. We then extended our
analysis to the genome-scale models of H. pylori, E. coli, and S.
cerevisiae to identify the essential core of reactions required for
biomass formation on a glucose-minimal medium and to exam-
ine the topological features of the identified reaction flux con-
nected networks linked through directional coupling.

E. coli Central Metabolism
The coupling interactions for E. coli central metabolism are de-
picted pictorially in Figure 9. Due to the significant amount of
redundant connectivity in central metabolism, no large fully
coupled reaction sets were found. Instead, we identified seven
fully coupled sets of two reactions (EDD/EDA, ZWF/PGL, ACEA/
ACEB, GAP/PGK, GPM/ENO, PTA/ACK, GLT/ACN) correspond-
ing to consecutive reactions in the network. We also found that
the forward and backward directions of glycolysis, the pentose
phosphate pathway, and the TCA cycle are completely discon-
nected from one another, although Figure 9 reveals a significant
amount of internal coupling between the various reactions
within each pathway. In addition, whereas Entner-Doudoroff
glycolysis (i.e., EDD and EDA) is dependent on the activity of the
forward direction of the pentose phosphate pathway, the anaple-
rotic and respiration reactions are not coupled with any reactions
of the three major central metabolic pathways.

We next examined how FCF-derived directionality data
along with knowledge of partially and fully coupled reactions
enables the identification of missing elements of a metabolic
reconstruction. Specifically, consider the set of reaction fluxes in
Figure 9 which must be forced to zero under the steady-state
assumption if the ZWF reaction is removed from the network. As
explained previously, PGL is forced to zero if ZWF is knocked out,
because the two reaction fluxes are fully coupled for aerobic
growth on glucose. The FCF procedure also identifies five addi-

Figure 9 The complete reaction coupling relationships in E. coli central
metabolism for aerobic growth on glucose. Reversible reactions are listed
by the reaction name, followed by _F and _B to denote the forward and
backward directions, respectively. The reaction names and stoichiometry
corresponding to the reaction abbreviations are found in the Supplemen-
tary Material.
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tional functionalities (i.e., EDD, EDA, GND, RPE_F, and TKT2_F)
comprising the Entner Doudoroff pathway and part of the pen-
tose phosphate pathway, which are eliminated upon the removal
of ZWF. Interestingly, however, a recent study demonstrated that
an E. coli mutant lacking glucose-6-phosphate dehydrogenase ac-
tivity (ZWF) had residual activity through the Entner Doudoroff
and/or pentose phosphate pathway, accounting for 7% of glu-
cose metabolized (Fischer and Sauer 2003). Here, flux coupling
analysis is useful by pinpointing where the metabolic reconstruc-
tion may be incomplete. Specifically, the “bypass” of the ZWF
reaction could be explained by a glucose dehydrogenase reaction
which enables the Entner Doudoroff and pentose phosphate
pathways to operate even without the ZWF functionality (Fischer
and Sauer 2003). Accordingly, the most recent E. coli stoichio-
metric model (Reed et al. 2003) includes this reaction, which is
absent from the E. coli model used in this work (Edwards and
Palsson 2000).

Flux coupling analysis can also be used to identify all
equivalent knockouts or multiple targets for the removal of a
particular reaction. For example, suppose one wants to prevent
the pentose phosphate pathway reaction TKT2 from carrying
flux in the forward direction. The FCF procedure identifies six
functionalities (i.e., ZWF_F, PGL, GND, RPE_F, TKT1_F, and
TALB_F) which could be alternatively eliminated to prevent
TKT2_F from carrying flux under steady-state conditions. In the
TCA cycle, the FCF procedure finds that the removal of GLTA or
ACN_F ensures that the ICD_F reaction carries no flux. This is
interesting because the elimination of isocitrate dehydrogenase
(ICD_F) prevents E. coli growth on a glucose-minimal medium
(Helling and Kukora 1971). Thus, flux coupling analysis correctly
points out that the citrate synthase (GLTA; Lakshmi and Helling
1976) or aconitase (ACN_F; Gruer et al. 1997) mutations are also
lethal for E. coli growth on glucose because they prevent the
activity of isocitrate dehydrogenase.

Essential Reaction Core for Biomass Formation
The FCF procedure can be used to identify the essential core of
metabolic reactions necessary for biomass formation for a given
environmental condition. In Burgard et al. (2001), it was shown
that the minimal set of E. coli reactions needed to support various
levels of growth is a strong function of the uptake environment.
Although the minimum number of reactions required for a given
biomass yield is constant, there exist a myriad of alternate mini-
mal reaction sets having the same number of reactions due to
network redundancy. Using FCF, we can identify the conserved
core of reactions present in all of these minimal reaction sets.
Specifically, all reactions which are either partially (vbiomass ↔ vj),
fully (vbiomass ⇔ vj), or directionally coupled (vbiomass → vj) to bio-

mass production are essential for cellular growth. Overall, FCF
determined the percentage of reactions in the essential core for
aerobic growth on a glucose-minimal medium to be 59% (229
reactions), 28% (206 reactions), and 14% (166 reactions) for H.
pylori, E. coli, and S. cerevisiae, respectively. These data are avail-
able upon request. Note that the size of the essential core of
reactions is smaller than the minimal reaction sets (e.g., the mini-

Figure 10 The number of reactions N(k) implying k other reactions are plotted as a function of k for H. pylori, E. coli, and S. cerevisiae growth on a
glucose-minimal medium.

Figure 11 Genome-wide metabolic coupling for E. coli growth on a
glucose-minimal medium with (A) or without (B) the presence of a bio-
mass reaction. The biomass reaction is located in the bottom left corner of
(A).
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mal reaction set for E. coli growth on glucose contains 224 reac-
tions (Burgard et al. 2001)). This is because non-unique, though
necessary, functions are essential for growth in each network.
This set of non-unique required reactions for growth is larger in
the more complex S. cerevisiae and E. coli networks than in H.
pylori, due to their inherent flexibility.

Scaling Properties of Directional Coupling
The connectivity of the directional couplings of the three meta-
bolic networks was examined by constructing reaction maps
where nodes correspond to metabolic functionalities, and arcs
denote the presence and directionality of the coupling between
reactions. It is important to note that unlike the study of Jeong et
al. (2000), here nodes denote metabolic functionalities, not me-
tabolites. Although metabolites cannot be “deleted” from a net-
work, metabolic functionalities can be eliminated by deleting the
appropriate gene or genes. Therefore, the vulnerability of the
network to gene deletions can now be directly assessed. Reactions
associated with coupled reaction sets are lumped together into
super-nodes, one per partially/fully coupled set, because their
directional coupling relationships are equivalent (Figs. 3, 9). Spe-
cifically, we examined whether the directional coupling between
metabolic reactions is scale-free, characterized by a relatively
small number of well connected nodes, or random, where the
number of arcs associated with each node follows a Poisson dis-
tribution.

The number N(k) of nodes/reactions implying a certain
number of k reactions is plotted in Figure 10 for H. pylori, E. coli,
and S. cerevisiae growth on a glucose-minimal medium. We found
that the connectivity of the three reaction maps is consistent
with that of scale-free networks, as the number of nodes imply-
ing k other nodes decreases exponentially with k (Barabasi and
Albert 1999). In all cases, the correlation exponents are less than
two, meaning that if the networks continue to expand through
evolution, the total number of directional flux couplings will
grow faster than the total number of reactions, and no finite
value can characterize the average coupling degree. These char-
acteristics were encountered previously for many other types of
investigated networks (Dorogovtsev and Mendes 2003). Thus,
not only do the static features of metabolic networks (i.e., the
connectivities of their metabolites) exhibit a scale-free topology
(Edwards and Palsson 1999; Jeong et al. 2000; Wagner and Fell
2001), but also the stoichiometry driven couplings linking the
individual reactions conform to a scale-free architecture. Inter-
estingly, although the distribution of vertex degrees in the reac-
tion-centered graph investigated by Wagner and Fell (2001) does
not follow a power law, we found that the distribution of vertex
degrees in the reaction flux-centered graphs does.

The genome-wide coupling between metabolic reactions for
E. coli growth on a glucose-minimal medium is shown in Figure
11 with and without the presence of a centralized biomass drain.
Visual inspection of Figure 11 reveals many fundamental orga-
nizational principles of mature scale-free networks: the existence
of a giant component consisting of nodes interconnected with
short paths, hubs dominating the topology, and inhomogeneity
and clustering features. Note that the presence of the biomass
drain reaction, shown in the bottom left-hand corner of Figure
11A, is responsible for connecting a large percentage of the meta-
bolic network through directional coupling.

DISCUSSION
In this paper, we introduced the Flux Coupling Finder (FCF) pro-
cedure for identifying blocked and coupled reactions in genome-
scale metabolic models. This identification can be made under

different environmental conditions and growth demands. The
approach is based on the successive solution of linear program-
ming problems, which allows it to remain tractable for large
metabolic networks involving many hundreds or even thousands
of reactions. Consequently, the FCF method does not require
breaking large metabolic networks into smaller subnetworks to
identify coupled reaction sets, as this a priori clustering does
indeed miss various couplings. It is important to note that flux
coupling analysis identifies not only fully coupled reactions but
also directionally and partially coupled reactions, unlike other
approaches that focused on pinpointing enzyme subsets com-
posed of only fully coupled reactions. As was shown earlier, par-
tially as well as directionally coupled reactions are equally im-
portant to track.

The FCF procedure was applied to the three stoichiometric
models of H. pylori, E. coli, and S. cerevisiae to provide a detailed
analysis of their topological features. It was determined that 10%,
14%, and 29% of their respective reactions are blocked uncondi-
tionally. Furthermore, we found that the optimal growth of the
larger networks involves a much higher percentage of blocked
reactions. The percentage of reactions in coupled sets decreases
substantially with model size, alluding to the greater flexibility
and redundancy inherent in the larger models of E. coli and S.
cerevisiae. Unlike blocked reactions, the partial and full coupling
of reactions was found to be rather condition-independent, as
the uptake conditions barely affect the percentage of reactions in
coupled sets. Anaerobic conditions also had little impact on the
coupling of reactions (data not shown).

Flux coupling analysis also revealed that postulating a con-
stant biomass composition leads to the coupling of large sets of
reactions in all three organisms. Interestingly, the size of the
biomass-coupled subset is much larger in H. pylori than in E. coli
or S. cerevisiae, as the more complex networks have the inherent
flexibility to decouple the production of various biomass precur-
sors from one another. For all three networks, allowing the bio-
mass components to be drained independently of one another
breaks these large sets of biomass-coupled reactions into smaller
sets associated with a particular biomass precursor. The FCF pro-
cedure also led to the identification of the essential core of reac-
tions whose activity is required for cellular growth for a given
condition. This allows the lethality of any knockout to be quickly
evaluated by examining the essential core of metabolic reactions
required for cellular growth under the condition of interest. Re-
actions contained in this set are essential for biomass production
for the examined condition, and thus their deletion is predicted
to be fatal.

Concurrently, directional coupling data obtained from FCF
were used to detect sets of affected reactions and equivalent
knockouts in E. coli central metabolism for growth on glucose.
Specifically, it was revealed that the forward and backward direc-
tions of glycolysis, the pentose phosphate pathway, and the TCA
cycle are not stoichiometrically coupled to one another for
growth on glucose. Although FCF does not make quantitative
phenotypic predictions for a particular knockout, it allows the
identification of all reactions forced to zero following the re-
moval of a certain network function. In addition, FCF suggests
multiple targets for removing a particular metabolic reaction
by locating equivalent knockouts, and allows an immediate as-
sessment of the consequences (i.e., affected reactions) of imple-
menting any one of the candidate deletions. Finally, it was
shown that not only the static but also the systemic features of
metabolic networks captured with directional coupling exhibit a
scale-free topology. Furthermore, the exponential correlation be-
tween k and N(k) improved substantially with increasing net-
work size, suggesting that as network complexity/size increases,
they are driven towards a scale-free architecture which is more
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resistant to random attacks (i.e., mutations). In this respect, it is
important to mention that whereas general graph-theoretic ap-
proaches predict the functional vulnerability of free-scale net-
works to the removal of hubs (the most highly connected verti-
ces), FCF allows for the classification between essential and non-
essential hubs, as essential hubs are implied by many other
reactions.

The FCF procedure can be used for both aiding metabolic
reconstructions and guiding genetic manipulations. For ex-
ample, blocked reactions may signify model omissions or incom-
plete pathways. Coupling information can be used to suggest
multiple avenues for achieving a particular reaction inactivation,
and to enable the quick assessment of the reactions forced to be
inactivated upon a given deletion. The complete coupling char-
acteristics of mutant networks can be established by reapplying
the FCF procedure with the modified stoichiometric relations.
Clearly the applications and implications of flux coupling analy-
sis are not limited to those discussed in this paper. For example,
it will be interesting to examine whether the expression levels of
genes associated with partially or fully coupled reactions are cor-
related. Thus, the FCF output may also be used to supplement
operon prediction tools, as coupled reactions could be under co-
ordinated regulation. Preliminary comparisons of coupled reac-
tion sets with operons available from the RegulonDB (Salgado et
al. 2001) database revealed that about 30% of coupled reaction
sets identified for E. coli growth on a complex medium include
two or more genes from common operons. Almost half of such
coupled reaction sets correspond exactly to operons. Due to its
wide range of features and applicability to genome-scale net-
works, the Flux Coupling Finder procedure provides a useful
framework for both modelers and experimentalists seeking to
extract biologically meaningful information from metabolic re-
constructions.

APPENDIX A

Flux Ratio Maximization/Minimization
Transformation Proof
In this appendix, we show that the nonlinear programming
problem of flux ratio maximization or minimization can be re-
cast as the linear programming problem presented previously in
the Coupled Reactions section. For any two fluxes, v1 and v2, the
maximization or minimization of their respective ratios is de-
scribed mathematically as

maximize �or minimize� v1�v2

subject to �
j= 1

M

Sijvj = 0, � i ∈ N

v j
uptake � v j

uptake_max, � j ∈ Mtransport

vj � 0, � j ∈ M

By multiplying the numerator and denominator of the objective
function as well as all constraints by a positive variable t, an
equivalent problem (P) is obtained.

maximize �or minimize� v1 � t�v2 � t = v1�v2 �P�

subject to �
j= 1

M

Sij �vj � t� = 0, � i ∈ N

v j
uptake � t � v j

uptake_max � t, � j ∈ Mtransport

vj � t � 0, � j ∈ M

t � 0

We next show that the following linear formulation (P�) is com-
pletely equivalent to problem (P).

maximize or �minimize� �v1 �P��

subject to �v2 = 1

�
j = 1

M

Sij �vj = 0, � i ∈ N

�v j
uptake � v j

uptake_max � t, � j ∈ Mtransport

�vj � 0, � j ∈ M

t � 0

Specifically, the goal is to solve (P�) to obtain (v� , t) and have
v = v� /t solve (P). Note that the proof provided below is for the
maximization case of the above formulations, as the proof for the
minimization case can be obtained with the appropriate modifi-
cations.

Theorem: If there exists an optimal solution to (P) with
v2 > 0, and there is also an optimal solution (v� *, t*) to (P�), then
v* = v� */t* solves (P).

Proof: Because (v� *, t*) is optimal to (P�) it follows that
v� * � v� . By contradiction, suppose that v* = v� */t* does not solve
(P) but there exists an optimal solution v� to (P). Therefore, the
following three conditions must be satisfied:

(1) v� must be feasible to (P)
(2) v�2 > 0
(3) v1�/v�2 > v1*/v2* because v* is suboptimal, whereas v� is op-

timal.
Now let t� = 1/v�2. Because v�2 > 0, we can deduce that
(i) t� > 0.
Also let v� � = t� · v�, implying
(ii) v� 2� = 1.
Following from condition (1) above,

�iii� �
j= 1

M

Sij �v �j = 0, � i ∈ N

�v �j
uptake � v j

uptake_max � t�, � j ∈ Mtransport

�v �j � 0, � j ∈ M

From (i–iii), we see that t� and v� � are feasible to (P�). Finally, from
condition (3) we determine that v1� · t� > v1* · t* because
v�2 · t� = v2* · t* = 1. Therefore, we recover v� � > v� *, which contra-
dicts the original assumption.

Therefore,

v1*�v2* = � �v1*�t*��� �v2*�t*� = �v1* because �v2* = 1

confirming that the optimal objective function value to (P�) is
equivalent to that of (P).
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