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Antibodies are an important class of proteins with many
biomedical and biotechnical applications. Although there
are a plethora of experimental techniques geared toward
their efficient production, there is a paucity of compu-
tational methods for their de novo design. OptCDR is a
general computational method to design the binding por-
tions of antibodies to have high specificity and affinity
against any targeted epitope of an antigen. First, combi-
nations of canonical structures for the antibody comple-
mentarity determining regions (CDRs) that are most
likely to be able to favorably bind the antigen are
selected. This is followed by the simultaneous refinement
of the CDR structures’ backbones and optimal amino
acid selection for each position. OptCDR is applied to
three computational test cases: a peptide from the capsid
of hepatitis C, the hapten fluorescein and the protein vas-
cular endothelial growth factor. The results demonstrate
that OptCDR can efficiently generate diverse antibody
libraries of a pre-specified size with promising antigen
affinity potential as exemplified by computationally
derived binding metrics.
Keywords: antibody design/computational protein design/
fluorescein/hepatitis C/vascular endothelial growth factor

Introduction

Antibodies are proteins in vertebrate immune systems that
are able to bind a diverse set of molecules, ranging from pro-
teins and peptides to haptens (i.e. small molecules), with
high specificity and affinity. They are composed of pairs of
heavy and light chains folded into the well-known ‘Y’ shape.
Two identical heavy chains form the stem and each branch is
constructed from a light chain and the end of one of the
heavy chains. The entire stem and approximately half of
each branch are collectively referred to as the constant region
while the ends of each branch are the variable regions. Each
variable region is composed of a highly conserved frame-
work and six complementarity determining regions (CDRs),
also known as hypervariable regions. The six CDRs, three on
the light chain (L1, L2 and L3) and three on the heavy chain
(H1, H2 and H3), are known to be responsible for the

majority of antibody-binding interactions. Humanization
(Almagro and Fransson, 2008) is a common experimental
technique where the CDRs from a non-human antibody are
attached to the framework of a human antibody, thereby
retaining the binding properties of the non-human antibody
while decreasing or eliminating its immunogenicity. It is
well established that for all CDRs, except H3, there are dis-
crete sets of conformations that their secondary structures
assume, known as canonical structures (Chothia and Lesk,
1987). Notably, there is a subset of antibodies found in
camelids that lack light chains and have shorter than normal
heavy chains (Hamers-Casterman et al., 1993).

Ever since antibody-producing mouse B cells were first
immortalized by fusion with cancer cells to create hybrido-
mas (Kohler and Milstein, 1975), antibodies have been exten-
sively used in a variety of contexts. Experimentally, their
ability to recognize molecules with high specificity and affi-
nity has been leveraged in popular assays such as ELISA
(Reen, 1994) and ELISPOT (Czerkinsky et al., 1983).
Medicinally, they are a profitable drug class, with the five
top-selling antibodies [Rituxan (Plosker and Figgitt, 2003),
Remicade (Feldmann and Maini, 2001), Herceptin (Vogel
et al., 2001), Humira (Kempeni, 1999) and Avastin (Chen
et al., 2001)] having revenues in excess of $11 billion in
2006 (Dimitrov and Marks, 2009).

Therefore, it is not surprising that over the years, there
have been extensive efforts geared toward designing anti-
bodies and libraries thereof. A number of experimental tech-
niques (Hanes and Pluckthun, 1997; Chen et al., 1999; Boder
et al., 2000; De Pascalis et al., 2003; Rajpal et al., 2005;
Reiersen et al., 2005; Fukuda et al., 2006; Walker et al.,
2009) have been developed and successfully applied to
design antibodies to bind desired antigens or to improve the
binding characteristics of an existing antibody. For example,
Chen et al. (1999) used monovalent phage display to increase
the affinity of an antibody against vascular endothelial
growth factor (VEGF) by 100-fold. While libraries have been
computationally designed for other protein targets (Meyer
et al., 2003; Saraf et al., 2004; Pantazes et al., 2007), compu-
tational antibody design methods have so far focused on
altering existing antibodies to improve their properties (Clark
et al., 2006; Lippow et al., 2007; Barderas et al., 2008; Clark
et al., 2009). Two notable examples are the use of a variety
of computational methods to predict beneficial mutations for
an antibody–antigen complex (Clark et al., 2006) and the
rational redesign of an anti-VLA1 antibody through modifi-
cation of a single CDR (Clark et al., 2009). Other compu-
tational efforts have focused on predicting antibody
structures from only their amino acid sequences (Morea
et al., 2000; Whitelegg and Rees, 2000; Sivasubramanian
et al., 2009).

Existing experimental and computational antibody design
methods have made key contributions; however, there is still
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a need for a general computational method that can rapidly
design libraries of antibodies to bind difficult-to-target epi-
topes. The proposed general computational method, Optimal
Complementarity Determining Regions or OptCDR, is used
for the de novo design of novel antibodies to bind any
selected antigen with high affinity and specificity. OptCDR
expediently generates multiple distinct and original libraries of
user-specified size of antibody CDRs that can be grafted into
the framework of an antibody using standard humanization
techniques (Almagro and Fransson, 2008). Benchmarking
against three test cases reveals OptCDR’s ability to expedi-
ently generate multiple original and diverse antibody libraries
with computational binding metrics at least as good as the
ones for naturally occurring antibodies.

Methods

OptCDR is a four-step workflow to design libraries of anti-
body CDRs to bind a specified antigen epitope. The first step
is the selection of the combination of CDR canonical struc-
tures (only backbones) that are most likely to have favorable
binding with the antigen. During the second step, the amino
acid sequences of the selected structures are initialized one at
a time using a rotamer library, energy functions, and a
mixed-integer linear programming (MILP) optimization for-
mulation. This is followed by several thousand iterations of a
modified version of the previously developed iterative
protein redesign and optimization (IPRO) (Saraf et al., 2006)
procedure, which simultaneously refines the backbone struc-
tures and amino acid sequences of the CDRs. The fourth step
of OptCDR is library generation by accumulation of the
most-promising mutations for the CDRs.

Canonical structure identification
The first step of OptCDR requires the use of a library of cano-
nical structures that spans the full range of structural diversity
exhibited by CDRs in known antibodies. This library was con-
structed by performing a clustering analysis on the CDRs
identified from 883 antibody structures downloaded from the
Protein Data Bank (PDB) (Berman et al., 2000). Sequence-
based rules, given in Table I, were employed to identify the
CDRs in each antibody. The rules were based on those from

the Web Antibody Modeling (WAM) (Whitelegg and Rees,
2000) method and then expanded to include amino acids with
similar chemical properties. When these sequence-based rules
were not sufficient (�25% of cases), the framework of the
antibody variable region was aligned to a consensus frame-
work and structural analysis was used to identify the CDRs.
Through utilization of sequence and structural analyses, at
least one CDR was identified in 833 of the 883 structures and
all six in 700 of them.

A clustering procedure inspired by the work of Martin and
Thornton (1996) was used to group similar CDRs into cano-
nical clusters. At the end of the clustering, a canonical struc-
ture was selected from each cluster as the structure with the
smallest deviations in the sines and cosines of its phi, psi
and omega dihedral angles from the averages of the cluster.
The clustering was carried out such that all members of a
cluster had a backbone atom (N, Ca and C) RMSD of no
more than 1.5 Å from the canonical structure. A number of
modifications were made a posteriori to resolve structural
inconsistencies, such as improper attachment to the variable
region framework or significant clashing (i.e. at least one
pair of atoms less than the sum of the Van der Waals radii
apart) with other canonical structures. Clusters containing
only one or two members for all CDRs except H3 were dis-
carded. Ultimately, this process resulted in 13 L1, 1 L2, 9
L3, 8 H1, 4 H2 and 124 H3 CDR canonical structures. The
four clusters of H2 CDRs are shown in Fig. 1 as an example
of how similar structures are grouped together and dissimilar
structures are disaggregated.

Step 1: selection of CDR canonical structures. Canonical
structures for CDRs describe only their backbone confor-
mation with no information about the side chains. Owing to
the absence of residue type information, we developed a
scoring system to distinguish between structures that have the
potential to exhibit favorable binding with the antigen using
only backbone atom–antigen distance information. The
hypothesis is that the antigen should be placed within reach
of the antibody CDRs (i.e. ,8 Å) but avoid detrimental
clashes (i.e. closer than the sum of two atoms Van der Waals
radii). Specifically, if the distance between a backbone atom
in the structure and the closest atom in the antigen is less

Table I. The sequence-based rules for identifying CDRs

CDR
loop

Starting position Preceded by Length Followed by

L1 1 residue after first CYS CYS 10–17 residues TRP - TYR/LEU/PHE/VAL - GLN/LEU/PHE
L2 14–19 residues after L1 ILE/VAL/MET - TYR/LYS/PHE/

HIS/GLY
7 residues GLY/GLU

L3 1 residue after first CYS after L2 CYS 7–13 residues PHE - GLY - XXX - GLY
H1 4 residues after first CYS CYS - XXX - XXX - XXX 10–12 residues TRP - ILE/VAL/MET/ALA/PHE - ARG/LYS

- GLN/ASN/LYS/GLU/HIS
H2 Approximately 15 residues after H1 TRP/TYR/LEU - ILE/LEU/VAL/

MET - GLY/ALA/SER
9–15 residues (A) TYR - XXX - XXX - XXX - XXX - LYS

(B) TYR/PHE - XXX - XXX - XXX - XXX -
GLN/LYS/ARG

H3 3 residues after CYS. Approximately
40 residues after H2

CYS - XXX - XXX 3–22 residues TRP - GLY - XXX - GLY

XXX corresponds to any permitted amino acid. ‘/’ separate amino acids that are acceptable at a given position while ‘-’ distinguish between different positions.
For the end of the H2 CDR, rule (A) was applied first and if that failed then rule (B) was used.
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than the sum of their Van der Waals radii, then the contact is
penalized with a negative score. Alternatively, if the two
atoms are more than 8 Å apart, then the contact is considered
to be unlikely to contribute to binding and a zero score is
assigned. Only if the distance is between the sum of the two
atoms Van der Waals radii and 8 Å is a positive score
assigned. A penalty score of 25 for steric clashes and a
reward score of þ1 for potential to contribute favorably to
binding were used. The score for a given canonical structure
is computed as the sum of the scores of the atoms in its
backbone. It is worth noting that all steric clashes between
the backbone atoms of the CDRs and the antigens are
equally penalized. The reason for this uniform treatment of
clashes is that if an antigen is clashing with the backbone
atoms of a CDR, then most likely there would be significant
clashes with the side chain.

The problem of selecting the highest scoring combination
of non-clashing canonical structures can be mathematically
represented using an MILP representation. This requires the
definition of the index set I ¼ fi j L1, L2, L3, H1, H2, H3g
denoting the six CDRs and sets Ci ¼ fc j 1, . . . ,Cig encoding
the number of canonical structures for a given CDR (i.e. 13,
1, 9, 8, 4 and 124, respectively). Set ICclash contains all pair-
wise canonical structure combinations (i1,c1) and (i2,c2) that
share at least one pair of atoms that are closer than the sum
of the two atoms Van der Waals radii (steric clash). The
importance of excluding sterically clashing canonical struc-
ture pairs is bolstered by the fact that out of 521 antibody
structures with resolution no worse than 2.5 Å, there were
only two such clashing pairs (PDB codes 1LGV, 1OCW)
and both such clashes were small (,0.2 Å). Parameter Si,c

encodes the score contribution of the cth structure of the ith
CDR. Binary variable yi,c encodes which structure c is
selected for the ith CDR. Specifically, yi,c is equal to one if
structure c has been selected for CDR i and zero otherwise.

The resulting MILP optimization problem is posed as:

Maximize
X6

i¼1

XC

c¼1

yi;cSi;c ð1Þ

Subject to :
XC

c¼1

yi;c ¼ 1; 8i [ I ð2Þ

yi1;c1 þ yi2;c2 � 1; 8ði1; c1; i2; c2Þ [ ICclash ð3Þ

Equality constraint (2) ensures that exactly one structure is
selected for each CDR while inequalities (3) preclude the
simultaneous presence of two canonical structures that
sterically clash. The optimization formulation described
collectively by Equations (1–3) is solved to global optimality
using CPLEX version 11 (ILOG, 2007) accessed in the
GAMS modeling environment. The solution of the above
MILP formulation yields the highest scoring combination of
canonical structures for a given position of the antigen.

The scoring system was tested on 254 native antibody–
antigen complexes with resolutions no worse than 2.5 Å in
which all six CDRs had been identified and 25 400 decoy
complexes. The decoy complexes were generated by
randomly changing the CDR canonical structures of the
native complexes 100 times each. As shown in Fig. 2, the
distribution of scores for the native complexes was notably
better than those for the decoy complexes. Using a cutoff
score of 52, the scoring system achieves a sensitivity of 85%
and a specificity of 80%, where sensitivity is the percentage
of native complexes above the cutoff and specificity is the
percentage of decoy complexes below the cutoff. Notably, a
slightly better separation between native and decoy com-
plexes could be achieved with a cutoff of 10 Å, but it was
not adopted because it created an abnormal bias for longer
canonical structures. The highest scoring combination of
CDR canonical structures was also identified for each one of
the 254 antibody–antigen complexes. On average, the native
complexes scored within 23% of the highest scoring combi-
nation of CDR canonical structures for their antigen positions
and in 10 cases, the specific CDRs of an antibody scored
better than the best combination of canonical structures. This
is consistent with the expectation that native antibodies are
generally very good but rarely optimal at recognizing a par-
ticular antigen.

Proper position of the antigen in the antibody binding
pocket is addressed by iteratively solving the MILP for
different antigen locations. For each type of antigen (hapten,
peptide and protein), average Cartesian coordinates and stan-
dard deviations for the center of mass of the portion of the
antigen being bound were calculated. Several thousand
antigen positions and orientations are randomly generated
with normally distributed departures for the three transla-
tional and uniformly distributed departures for the three
rotational degrees of freedom. When it is desired to target a
specific epitope, the rotational degrees of freedom can be
limited to ensure that the epitope is the only portion of the
antigen interacting with the CDRs. Afterwards, several
antigen positions with the highest scoring combinations of

Fig. 1. The four clusters of H2 CDRs. The members of the clusters are
shown in dark gray, and the canonical structure of each cluster is shown in
light gray. All members of each cluster have an RMSD of no more than
1.5 Å with the canonical structure of that cluster.
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canonical structures are retained. It is well established that
antibodies typically form differently shaped binding pockets
depending on the type of antigen: flat surfaces for proteins,
grooves for peptides and cavities for haptens (MacCallum
et al., 1996; Collis et al., 2003; Persson et al., 2006).
Interestingly, the first step of OptCDR recapitulates these
types of binding pockets for the different classes of antigens
without the inclusion of any specific restraints to bias the
selection toward these types of pockets.

Step 2: initialization of CDR amino acid sequences. The
second step of OptCDR is the initialization of the amino acid
sequences of the selected canonical structures one at a time
in an order that is indicative of their typical proximity to
antigens (e.g. H3, L3, H2, H1, L1 and L2) and can be speci-
fied by the user of OptCDR. This is done using energy func-
tions [Van der Waals and electrostatics from CHARMM
(MacKerell et al., 1998) and Lazaridis–Karplus solvation
(Lazaridis and Karplus, 1999)], a rotamer library and a pre-
viously presented MILP rotamer optimization formulation
(Saraf et al., 2006) that selects the lowest-energy combi-
nation of rotamers. Three additional sets of constraints are
implemented in the MILP to ensure that the amino acids
selected are consistent with the chosen canonical structures.

The first two sets of constraints limit the total percentage
usage of each amino acid and all charged amino acids in a
given CDR to below one standard deviation greater than
their average percentage usage in the downloaded database
of natural antibodies. The third set of constraints limits the
specific amino acids permitted at each position in a canonical
structure. If a canonical structure was observed at least 30
times, then only the amino acids that were encountered
before at a given position are permitted. If a canonical struc-
ture was observed fewer than 30 times, then only the amino
acids of the same ‘type’ are permitted. The chemical types
used are charged (D, E, K, R and H), aliphatic (G, L, I, A, V
and M), aromatic (F, W and Y) and polar (S, T, C, N and Q).
Proline is treated as an aliphatic residue, but no rotamers of

it exist in the rotamer library, so it is never a selected amino
acid.

After the amino acid sequences of all six CDRs have been
initialized, a rigid-body docking step is carried out to refine
the position of the antigen in the antibody binding pocket.
This is followed by sequential solution of the MILP optimiz-
ation problem for each CDR in the same order as before and
then another rigid-body docking procedure.

Step 3: structure and sequence refinement with IPRO. In the
third step of OptCDR, several thousand iterations of a modi-
fied version of IPRO (Saraf et al., 2006; Fazelinia et al.,
2007) are carried out. In each iteration, a CDR is randomly
selected and the phi and psi dihedral angles of each residue
in the CDR are perturbed in CHARMM (MacKerell et al.,
1998). Next, the amino acid sequence of the CDR is
re-determined using the rotamer selection MILP. This is fol-
lowed by an energy minimization in CHARMM, during
which weak harmonic constraints (0.05 kcal/mol) are used
on all CDRs except H3 to ensure that their canonical struc-
tures are not changed. During this energy minimization,
similar constraints may also be used on the antigen to
prevent or allow antigen conformational rearrangements. The
Metropolis criterion, as in simulated annealing, is used to
determine whether or not to retain the results of the iteration.
If they are retained, a rigid-body docking procedure is
carried out followed by another CHARMM energy minimiz-
ation. If the post-docking interaction energy is lower than the
pre-docking energy, then the post-docking results are
retained. Otherwise, the pre-docking results are kept and the
retained structures serve as the starting points for the next
iteration. Over the course of many iterations, IPRO progress-
ively identifies sets of backbone perturbations and amino
acid sequence mutations that improve the interaction energy
between the CDRs and the antigen. The results from apply-
ing IPRO to specific, experimentally examined systems are
discussed in the Results section. IPRO has previously been
used to design several protein-substrate systems that were
experimentally verified to have the desired properties

Fig. 2. The score distributions of native and decoy antibody–antigen complexes. Using the scoring function, 254 native and 25 400 decoy antibody–antigen
complexes were examined and good separation between them was observed. Using a cutoff of 52, a sensitivity of 85% and a specificity of 80% were achieved,
where sensitivity is the percentage of native complexes above the cutoff and specificity is the percentage of decoy complexes below it.
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(Fazelinia et al., 2009; Khoury et al., 2009). The concept of
iterating between structure perturbation and sequence/
rotamer redesign was pioneered by Kuhlman et al. (2003) in
the design of Top7, a computationally designed protein with
a novel fold. The backbone perturbation followed by optimal
rotamer selection allows IPRO to simultaneously mutate
every amino acid in a CDR. This can uncover multiple non-
additive mutations that would be unlikely to be sampled
using directed evolution experiments. The use of simulated
annealing in IPRO safeguards against being trapped in local
energy minima, which allows for the identification of mul-
tiple solutions with very different sequences.

Step 4: library generation. In the final step of OptCDR, the
rotamer selection MILP is again employed to identify mul-
tiple low-energy amino acid sequences for each CDR.
Starting with the final structures from step 3, the MILP for-
mulation is solved multiple times for each CDR to identify
not only the best but also the second, third, etc. best sol-
utions by accumulating integer cuts that exclude previously
visited solutions. This identifies multiple amino acid
sequences for each CDR and a library of targeted size can be
constructed from the lowest-energy combinations of CDRs.
By using these four steps, OptCDR can expediently generate
multiple novel and diverse libraries of antibody CDRs to
bind any specified antigen.

Energy function testing
As a validation of the energy functions used in OptCDR, two
tests were carried out. First, we used IPRO to examine the 95
mutants to an anti-VLA1 antibody (PDB: 1MHP) that had
been computationally predicted to improve affinity with a
12% experimental success rate (Clark et al., 2006).
Following the experimental verification step, the authors a
posteriori refined their methods, so that 26% of their pre-
dicted favorable mutants were correct. Using the rotamer
selection and energy minimization using IPRO, we calcu-
lated the change in interaction energy compared with wild-
type for all 95 mutants. We observed an overall accuracy of

78% at predicting the experimental effect of the mutations
and 50% of our predicted favorable mutants were in agree-
ment with the experiment. These results demonstrate the
efficacy of the energy functions used within OptCDR to
distinguish between mutants that improve/decrease affinity.

As a follow-up, we tested the ability of OptCDR to
pinpoint the correct amino acid sequence for a given CDR
structure. We chose 38 high-resolution antibody–antigen
complexes and attempted to find even lower energy amino
acid sequences for their CDRs. For each antibody, we used
IPRO’s energy minimization and energy calculation func-
tions to refine the initial crystal structures and determine the
wild-type CDR-antigen interaction energies. Subsequently,
the rotamer selection MILP was used to generate the five
lowest-energy, non-wild-type amino acid sequences for each
CDR in each complex. The corresponding rotamers were
patched into the CDRs’ backbones and IPRO’s energy mini-
mization and energy calculation functions were used to
determine the interaction energy of the predicted low-energy
CDRs. For 67% of the CDRs, no sequence with a lower
energy than the native sequence could be found. Only 24%
of the non-native CDR amino acid sequences had lower
interaction energies than the native sequences, and the differ-
ences between the improved non-native and native sequences
were minor (,9%). These results indicate that OptCDR
recognizes the wild-type sequences known to lead to effec-
tive binding, for a given antigen and CDR combination, as
the best or near-best binders.

Results

Three systems were selected to test OptCDR’s efficacy: a
peptide from the capsid of hepatitis C (PDB: 1N64) (Menez
et al., 2003), fluorescein (PDB: 1FLR) (Whitlow et al., 1995)
and VEGF (PDB: 1CZ8) (Chen et al., 1999). Several compu-
tational metrics are used to draw comparisons, including
interaction energy defined as the minimized energy of the
antigen–CDRs complex minus the energy of the CDRs and
the energy of the antigen individually. It is approximated

Table II. Computational and experimental binding data for the antibodies

Antibody Antigen Interaction energy
(kcal/mol)

Contacts Polar contacts Experimental Kd

19D9D6 Hepatitis C capsid peptide 262.6 74 8 1.3 nM
IPRO affinity maturation of 19D9D6 Hepatitis C capsid peptide 278.1 to 280.1 81–87 14–15 NA
OptCDR designs Hepatitis C capsid peptide 288.2 to 2104.8 88–115 18–23 NA
OptCDR design with antigen rearrangment Hepatitis C capsid peptide 2123.6 to 2175.8 88–112 23–31 NA
4-4-20 Fluorescein 249.5 22 4 0.7 nM
Boder et al. best design Fluorescein 278.7 23 4 48 fM
Fukuda et al. consensus design Fluorescein 267.8 22 5 �1 nM (wt 32 nM)
Fukuda et al. best design Fluorescein 270.4 24 3 0.88 nM (wt 32 nM)
Jermutus et al. consensus design Fluorescein 274.9 24 3 �37 pM
IPRO affinity maturation of 4-4-20 Fluorescein 277.8 17 1 NA
OptCDR designs Fluorescein 255.2 to 257.3 71–79 8–9 NA
PDB 1CZ8 VEGF-epitope 1 2110.8 86 21 0.11 nM
IPRO affinity maturation of 1CZ8 VEGF-epitope 1 2111.0 to 2116.0 89–99 21–22 NA
OptCDR design VEGF-epitope 1 282.0 to 2109.0 73–110 11–25 NA
OptCDR design VEGF-epitope 2 288.6 to 298.4 57–85 15 to 20 NA
OptCDR nanobodies VEGF-epitope 1 282.2 to 292.6 79–86 20–22 NA

The various computational binding metrics are defined in the text at the start of the Results Section and all experimental Kd values were taken from the
appropriate publications. VEGF-epitope 1 is the epitope bound by bevacizumab while epitope 2 is on the opposite side of VEGF. The nanobody designs have
only three CDRs, all other antibodies have six.
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within CHARMM (MacKerell et al., 1998) using the Van der
Waals, electrostatics, bonds, angles, dihedral angles, impro-
per dihedral angles and generalized Born with molecular
volume integration implicit solvation energy functions.
Contacts are defined as the number of CDR atoms within
3 Å of the antigen and polar contacts are determined using
PyMOL (DeLano, 2008). All computations were carried out
on 3.0 GHz Intel Xeon processors with 4 GB of RAM. Each
complete antibody library design was generated on its own
processor and all were completed in ,12 days of compu-
tations, with an average of about 9 days.

Hepatitis C capsid peptide
Hepatitis C is a virus that infects approximately 3.2 million
people in the USA (http://www.cdc.gov/hepatitis/C/cFAQ.
htm#statistics). The CDRs of antibody 19D9D6 (PDB:
1N64) (Menez et al., 2003) that bind a peptide (residues 13–
40) from the capsid of the hepatitis C virus with a Kd of
1.3+ 0.1 nM are shown in Fig. 3A. This system was selected
as a general test of OptCDR to generate promising design
alternatives. We first examined the extent of improvements
that can be achieved in the computationally accessible
metrics of binding quality by only mutating the original anti-
body structure without altering the CDR canonical structures.
The results obtained using IPRO show improvements in all
three binding metrics (Table II). Interestingly, the mutations
identified are confined to the CDRs with the fewest antigen
contacts. This trend of predicting mutations in the periphery
of the antibody binding pocket is consistent with a previous
computational study that was experimentally validated
(Lippow et al., 2007). In this case, since 19D9D6 is already
a high-affinity antibody, the results indicate that the dominant
interactions in the center of the binding pocket are already
effective and binding could only be improved further through
repacking of the edges of the antibody–antigen interface.

We next used OptCDR to design three sets of antibody
CDRs to bind the peptide instead of relying on only adding

point mutations to 19D9D6. We first assumed a conservative
posture by imposing harmonic constraints that insured that
the antigen conformation did not change significantly upon
binding. The three generated designs exhibit highly diverse
antigen locations/orientations, canonical structure selections
and amino acid sequences, but all share the groove that is
typically observed for peptide-binding antibodies. Significant
improvements in all computational binding metrics are
observed (Table II) over the case of using only mutations.
Table III depicts the predicted lowest-energy amino acid
sequences for the CDRs of the structure shown in Fig. 3B.
By combining the predicted mutations, a library of CDRs
can be generated (maximum library size ¼ 1.1 � 1014). By
prioritizing mutations based on their binding scores, libraries
of any smaller size can be culled from the original.

Finally, we removed the harmonic constraints on the
antigen, allowing for its conformation to radically change in
response to the interaction energy minimization step, and used
OptCDR to generate three additional sets of antibody CDRs to
bind the peptide. As seen in Table II, allowing conformational
changes to the peptide in response to energy minimization led
to additional improvements in interaction energy and polar
contacts, although no effect on the number of contacts. It
should be noted that the conformational changes were not
forced or pre-specified, but came about as a response to inter-
actions with the CDRs during the IPRO step (i.e. step 3) of
OptCDR. In this case, the conformational changes were all
between 4.2 and 5.2 Å RMSD from the initial peptide confor-
mation. These results demonstrate how antigen conformational
changes upon antibody binding may be an important contribu-
tor in informing antibody–antigen interactions. OptCDR
allows for a user-specified presence, absence and modulation
of the strength of any imposed harmonic constraints.

Fluorescein
We next turned our attention to the hapten fluorescein for a
comparison with experimental results. Anti-fluorescein

Table III. A library of hepatitis C capsid binding antibody CDRs

The CDR sequences and predicted mutations to them to form a library of up to 1.1 � 1014 antibodies that can all bind the peptide from the capsid of hepatitis C.

Fig. 3. CDR–hepatitis C capsid peptide complexes. The capsid peptides are shown as red spheres, the CDRs are shown as orange ribbons, and CDR residues
within 4 Å of the peptide are explicitly shown. All images are from the same perspective. (A) The natural antibody–peptide complex (PDB: 1N64). (B) An
OptCDR design with no peptide conformational change. (C) An OptCDR design with peptide conformational change.
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antibodies have been used as the test system by several
experimental directed evolution efforts (Boder et al., 2000;
Jermutus et al., 2001; Fukuda et al., 2006) with different
display technologies to improve the binding of an scFv
derived from the anti-fluorescein antibody 4-4-20. This is a
particularly interesting system because 4-4-20’s affinity for
fluorescein is near the affinity ceiling of the tertiary immune
response (0.7+ 0.3 nM) (Boder et al., 2000). Boder et al.
(2000) used yeast surface display to identify an scFv with 14
mutations exhibiting a �6500-fold improvement in Kd, while
Fukuda et al. (2006) and Jermutus et al. (2001) used mRNA
and ribosome display, respectively, to identify mutants with
�30-fold improvement in Kd.

First, we used IPRO to evaluate these experimentally ident-
ified mutants: the best mutants identified by Boder et al.
(2000) and Fukuda et al. (2006) and the consensus mutants
identified by Fukuda et al. (2006) and Jermutus et al. (2001).
Since some of the mutations were in framework regions, the
entire variable domains were used to create the mutants, not
just the CDRs. SwissParam (http://swissparam.ch/) was used to
create the topology and parameter files needed in CHARMM
for fluorescein. Once the mutant antibodies were modeled, we
extracted their CDRs, so the calculated interaction energies
could be directly compared with OptCDR results. Table II
shows the computational and experimental improvements over
the wild-type scFv of the four mutants. Note that the rank
order of the mutants in terms of improvement over wild-type
using Kd and interaction energy, as quantified in OptCDR,
match. Furthermore, the H3 CDR in the Jermutus et al. (2001)
mutant shows the highest RMSD from the wild-type structure,
which matched the experimental observation of increased
flexibility of this CDR due to the removal of a salt bridge.

Next, IPRO was used to computationally affinity mature
the CDRs of antibody 4-4-20, leading to numerous mutations

(40 total) in all CDRs except H2. The computational binding
results are detailed in Table II. Although the improvement in
interaction energy over the wild-type antibody is not quite as
large as that of the best experimental mutant, it does surpass
the calculated energies for all other mutants. We also used
OptCDR to design two sets of CDRs to bind fluorescein.
Their computational binding metrics are given in Table II,
structures in Fig. 4 and amino acid sequences in Table IV.
Interestingly, the interaction energies of the OptCDR designs
do not reach the same levels as those of the computationally
and experimentally affinity-matured versions of 4-4-20, but
they do surpass the wild-type antibody. Both designs share a
number of features that appear favorable to binding. First, in
both cases, fluorescein is positioned within a deep cavity
between the L3 and H2 CDRs on one side and the H3 CDR
on the other. Both designs have long H3 CDRs folded
mostly over the top of the fluorescein molecules to trap them
in place, and it is this position of the H3 CDRs that lead to
the notable increase in contacts between the experimental
and OptCDR designs (Table II). For both designs, the edges
of the cavity have polar residues with each fluorescein
oxygen involved in at least one polar contact. Finally, the
sides of both cavities are composed of aliphatic and aromatic
residues stabilizing the core hydrophobic portion of fluor-
escein. We hypothesize that the H3 CDRs of the unbound
designs are sufficiently flexible to allow fluorescein access to
the binding pocket.

Vascular endothelial growth factor
Finally, OptCDR designs for binding VEGF are contrasted
against an affinity-matured antecedent of the antibody medi-
cation bevacizumab (Chen et al., 2001) to examine OptCDR’s
epitope targeting abilities. VEGF has been shown (Willett
et al., 2004) to promote tumor proliferation and growth. A

Fig. 4. CDR–fluorescein complexes. Fluorescein is shown as cyan spheres with oxygens and hydrogens shown in red and white, respectively. The CDRs are
shown as orange ribbons and all CDR residues within 4 Å of fluorescein are explicitly shown. All the complexes are shown from the same perspective relative
to the antibody binding pocket. (A) The structure of antibody 4-4-20. (B and C) The two OptCDR fluorescein-binding designs.

Table IV. Two libraries of fluorescein-binding antibody CDRs

The amino acid sequences of the two OptCDR designed fluorescein-binding antibodies and the predicted mutations to the CDRs to form libraries of antibodies.
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number of anti-VEGF antibody-based drugs, including bevaci-
zumab (Chen et al., 2001), with low nanomolar affinity are
available. The resolved structure (PDB: 1CZ8) of an affinity-
matured bevacizumab antecedent shows VEGF situated within
a pocket primarily formed by the heavy chain CDRs (Chen
et al., 1999). In all OptCDR results, a harmonic constraint
was used to prevent the structure of VEGF from changing sig-
nificantly during calculations.

IPRO-based computational affinity maturation of 1CZ8 led
to only minimal improvements in the interaction energy, as
well as the number of contacts and polar contacts, which is a
testament to the thoroughness of the experimental affinity
maturation that 1CZ8 has already undergone. When we used
OptCDR to predict novel CDRs to bind the same epitope of
VEGF targeted by 1CZ8, the best design, shown in Fig. 5B,
has binding metrics that are comparable with the existing
antibody (slightly greater interaction energy and a few more
contacts and polar contacts). Thus, the range of binding
metrics for OptCDR (Table II) only reaches the levels of
1CZ8, although the predicted structures are all notably differ-
ent and most of which exhibit the planar binding pocket
expected for protein-binding antibodies.

Next, we explored another set of OptCDR designs by tar-
geting an epitope on the opposite side of VEGF from the
portion bound by 1CZ8 and our other designs. To the best of

our knowledge, this portion of VEGF is not recognized by
cellular VEGF receptors or any designed antibodies. One of
the predicted designs is shown in Fig. 5C and the compu-
tational binding metrics are given in Table II. Even though
the obtained designs are very different as they target a com-
pletely different epitope of VEGF, the computational binding
metrics achieved are quite similar in value. The results
obtained demonstrate the efficacy of OptCDR to generate
designs that bind VEGF with equivalent computational
binding characteristics as the wild-type antibody with novel
CDRs or targeting a different epitope of the VEGF molecule,
alluding to the built-in redundancy of molecular recognition.

We decided to further explore VEGF-binding designs by
focusing on only three out of the six CDRs, as in nanobo-
dies. Nanobodies are single-domain proteins derived from
the variable domain of heavy chains from a special subset of
antibodies in camelids that lack light chains and thus have
only three CDRs instead of six. OptCDR was used to gener-
ate nanobody CDR designs by considering only the H1, H2
and H3 CDRs. Despite the reduction in the number of struc-
tural degrees of freedom, OptCDR identified designs based
solely on the heavy chain CDRs (Table II) that had similar
computational binding metrics to the six CDR designs. This
surprising finding is consistent with the experimental obser-
vation that nanobodies can have binding affinities that are

Fig. 5. CDR–VEGF complexes. VEGF is shown as green spheres, the CDRs are shown as orange ribbons, and CDR residues that are within 4 Å of VEGF are
explicitly shown. All images are from the same perspective relative to the antibody binding pocket. (A) The structure of PDB 1CZ8. (B) The best OptCDR
design generated to bind the same portion of VEGF as bevacizumab using all six CDRs while (C) is the best design to bind an epitope on the opposite side of
VEGF. (D) The best nanobody OptCDR design.
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equivalent to antibodies despite their smaller size. We
believe that OptCDR achieved this through the selection of
longer than typical canonical structures, especially for the
H3 CDR, as is typical in experimental nanobodies. In
addition, the absence of the light chain allows the antigen to
assume positions and orientations that are normally prohib-
ited due to steric clashes. A representative design plotted in
Fig. 5D illustrates how the selection of longer structures for
the H3 domain counteracts the loss of the light chain.

Discussion

Although there are many experimental techniques to design
and redesign antibodies to bind target antigens, to date com-
putational methods have focused only on redesigning existing
antibodies to have improved binding affinities. To the best of
our knowledge, OptCDR is the first general computational
method for the de novo design of antibodies to bind any
specified epitope of an antigen. Its four-step procedure works
by first selecting appropriate CDR canonical structures to
bind the antigen, then filling in their amino acid sequences,
followed by a simultaneous structural and sequence refine-
ment and finally a library generation step through accumu-
lation of the best mutations to each CDR. By using these
four steps, OptCDR can generate multiple novel and diverse
libraries of antibodies to bind any specified antigen. We
recognize that the framework regions of antibody variable
domains can contribute to antibody affinity (Almagro and
Fransson, 2008). In this first effort, however, we chose to
exclusively focus on the CDRs as they are the most impor-
tant factors in antibody recognition. This fact is manifested
by the largely conserved affinity upon humanization of anti-
bodies by grafting the CDRs onto human antibody frame-
works. Nevertheless, we believe that the OptCDR workflow
is open to future extensions that will target the design of the
entire antibody variable domains.

OptCDR can be thought of as a computational analogue to
the human immune system (or directed evolution exper-
iments). At the start of an infection, B cells produce initial
antibodies that bind the pathogen. As the infection pro-
gresses, the generated antibodies undergo an evolutionary
process where their pathogen-binding affinities are improved
by sequential identification of favorable mutations. The first
two steps of OptCDR, the identification of appropriate com-
binations of canonical structures and the filling in of their
amino acid sequences, can be viewed as the identification of
an initial antibody to bind the antigen. The third step of
OptCDR is the sequential identification of perturbation/
mutation combinations that lead to improved antigen
binding. The use of a methodology similar to the immune
system gives OptCDR the same flexibility as the immune
system: the ability to generate antibodies to bind a wide
range of possible epitopes of antigens. A strength and limit-
ation of this paradigm is that it selects antibodies on the
basis of having adequate but not necessarily optimal binding
affinities. This leads to an initial pool of structurally diverse
antibody designs whose affinity for the targeted antibody
can be ratcheted up further through the accumulation of
additional mutations. The diversity of possible antibody
design space in response to an antigen challenge suggests
that OptCDR identified solutions are unlikely to converge to
the amino acid choices of existing antibodies.

We have tested OptCDR on three antigens that span the
range of antigen sizes bound by antibodies: the hapten fluor-
escein, a peptide from the capsid of hepatitis C, and the
protein VEGF. All three antigens are bound by their wild-
type antibodies with low nanomolar affinities (Kd ¼ 0.7, 1.3
and 0.11 nM, respectively), making them challenging test
cases. Nonetheless, for all three cases, OptCDR arrived at
multiple novel sets of CDRs that form the appropriate types
of antibody binding pockets for the given antigen, have inter-
action energies comparable to or better than the native anti-
bodies and share many features that appear to be conducive
to high-affinity binding.

Finally, we believe that OptCDR also makes an important
contribution to the de novo protein design challenge. While
there exist a large number of protein engineering methods,
only a relative small number have successfully achieved the
de novo design of proteins and enzymes for a particular task
(Kraemer-Pecore et al., 2003; Kuhlman et al., 2003; Offredi
et al., 2003; Bender et al., 2007). By taking advantage of the
highly conserved structural features of antibodies, OptCDR
achieves the de novo design for a special class of protein
molecules.

OptCDR is available for download on our website, http://
maranas.che.psu.edu. Each of the four steps is run by an
interactive python script that asks for and validates all of the
necessary inputs for that step and then creates and, if desired,
submits a PBS script to run the step. A readme file with the
codes explains all of the terminology used by the python
scripts as well as highlighting the few lines of code that will
need to be changed to ensure the codes all work properly on
each user’s system.
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