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ABSTRACT A number of computational approaches have been developed to reengineer promising chimeric proteins one at a
time through targeted point mutations. In this article, we introduce the computational procedure IPRO (iterative protein redesign
and optimization procedure) for the redesign of an entire combinatorial protein library in one step using energy-based scoring
functions. IPRO relies on identifying mutations in the parental sequences, which when propagated downstream in the combi-
natorial library, improve the average quality of the library (e.g., stability, binding affinity, specific activity, etc.). Residue and rotamer
design choices are driven by a globally convergent mixed-integer linear programming formulation. Unlike many of the available
computational approaches, the procedure allows for backbone movement as well as redocking of the associated ligands after a
prespecified number of design iterations. IPRO can also be used, as a limiting case, for the redesign of a single or handful of in-
dividual sequences. The application of IPRO is highlighted through the redesign of a 16-member library ofEscherichia coli/Bacillus
subtilis dihydrofolate reductase hybrids, both individually and through upstream parental sequence redesign, for improving the
average binding energy. Computational results demonstrate that it is indeed feasible to improve the overall library quality as
exemplified by binding energy scores through targeted mutations in the parental sequences.

BACKGROUND AND INTRODUCTION

The ability to proactively modify protein structure and

function through a series of targeted mutations is an open

challenge that is central in many different applications. These

include, among others, enhanced catalytic activity (1–3) and

stability (4,5), creation of gene switches for the control of

gene expression for use in gene therapy and metabolic en-

gineering (6,7), signal transduction (8,9), genetic recombi-

nation (10), motor protein function, and regulation of cellular

processes (see Bishop et al. (11) for a review). This task is

complicated by the fact that proteins rely on complex

networks of subtle interactions to enable function (12–14).

Therefore, the effect of a mutation is difficult to assess a priori

requiring the capture of its direct or indirect effects on many

neighboring amino acids. As a result, most protein engineer-

ing paradigms involve the synthesis and screening of multiple

protein candidates (protein library) as a way to enhance the

odds of identifying proteins with the desired functionality

level. These directed evolution design paradigms (15–20)

typically involve juxtaposition of repeated library generation

and screening (Fig. 1). On the other hand, most computational

approaches for guiding protein design are focused on the

downstream redesign of single parental sequences or prom-

ising hybrids (Fig. 1). Notable exceptions include the work

of Bogarad and Deem (21) and efforts by Saven (22) that

describe computational methods for protein library design.

A number of computational models and techniques have

been developed (see Moore and Maranas (23) for review) to

aid in the in silico evaluation of protein redesign candidates.

Typically these techniques attempt to find single or multiple

amino acid sequences that are compatible with a given three-

dimensional structure specific to a targeted function (e.g.,

enzymatic activity). The protein fold is usually represented

by the Cartesian coordinates of its backbone atoms, which

are fixed in space so that the degrees of freedom associated

with backbone movement are neglected. More recent ap-

proaches (24–29) allow for some backbone movement.

Candidate protein designs are generated by selecting amino

acid side chains (using atomistic detail) along the backbone

design scaffold. For simplicity, side chains are usually only

permitted to assume a discrete set of statistically preferred

conformations referred to as rotamers (see Dunbrack (30)

for a review of current rotamer libraries). Thus, a protein

design consists of both a residue and a rotamer assignment

for each amino acid position. To evaluate how well a pos-

sible design fits a given fold, rotamer/backbone and rotamer/

rotamer interaction energies for all the rotamers in the

rotamer library are tabulated. These energies are approxi-

mated using standard force fields (e.g., CHARMM (31),

DREIDING (32), AMBER (33), and GROMOS (34)). Scor-

ing functions customized for protein design (35–37) (see

Gordon et al. (38) for a review) typically include van der

Waals interactions, hydrogen bonding, and electrostatics,

solvation, along with entropy-based penalty terms for flex-

ible side chains (e.g., arginine) (39–42). Because activity

level or other performance objectives are very difficult to

compute directly, alternative surrogates of hybrid fitness,
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such as stability or binding affinity, are employed in most

studies. The use of these indirect objectives further neces-

sitates the need for designing a combinatorial library rather

than a single hybrid to improve the chances of success.

Even for a small 50-residue protein, an enormous number

(i.e., 15350 � 10109 assuming a 153-rotamer library (43)) of

designs is possible. Both stochastic and deterministic search

strategies have been used to tackle the computational chal-

lenge of finding the globally optimum design within this vast

search space. Despite these challenges, a number of success

stories of combinatorial design for many different applica-

tions has been reported (42,44–50) in the last few years

demonstrating the feasibility of using computations to guide

protein redesign. Briefly, successes include manyfold im-

provements in enzyme activity and thermostability (50–52),

improved enantioselectivity (53–55), enhanced bioremedia-

tion (56–58), and even the design of genetic circuits (6,7,10)

and vaccines (59–61). It is increasingly becoming apparent,

however, that instead of computationally generating a set of

distinct protein redesigns, it is more promising to use

computations to shape the statistics of an entire combinato-

rial library. This allows one to assess and then ‘‘steer’’ di-

versity toward the most promising regions of sequence space

(62). This paradigm is more likely to succeed compared to

constructing, one at a time, protein designs. On the other end,

construction of combinatorial libraries based on mutation

and/or recombination without any guidance from models/

computations is a daunting task because only an infinites-

imally small fraction of the diversity afforded by DNA and

protein sequences can be examined regardless of the effi-

ciency of the screening procedure.

In response to these challenges, in this article we introduce

a new computational procedure IPRO (iterative protein

redesign and optimization) that allows for the upstream

redesign of parental sequences (Fig. 1). The key idea here is

that the residue changes within the parental sequences will

propagate in the combinatorial library; effectively introduc-

ing mutations within the hybrid sequences in the library (see

Fig. 1). Judicious selection of these mutations in the parental

sequences can simultaneously relieve unfavorable interac-

tions or clashes (63–65) within the hybrid sequences and

therefore enhance the overall quality of the library in one

step mirroring the experimental protocol design. Note that

even though IPRO is geared toward parental sequence re-

design, it can be used, as a limiting case, for the redesign of a

single or handful of individual sequences.

The key feature of the IPRO protocol is the cycling be-

tween sequence design, ligand redocking, and backbone

movement of a set of sequences representative of the com-

binatorial library. The goal of the sequence design here is to

choose mutations within the parental sequences, and there-

fore in the hybrid sequences, that optimize the average binding

energy/score (or alternative surrogates of design objectives)

of the hybrid sequences in the library. The genetic algorithm

of Desjarlais and Handel (66) and the Monte Carlo mini-

mization protocol of Kuhlman and co-workers (41) involve

similar sequence design and backbone perturbation moves.

However, they only allow for the design of a single sequence

at a time and involve full-scale optimization over rotamers

for only a local backbone perturbation. On the other hand,

IPRO allows for the design of the entire combinatorial

library and involves optimization over the local perturbation

region using a globally convergent mixed-integer linear pro-

gramming (MILP) formulation. In addition, IPRO allows for

the redocking of the associated ligands (e.g., substrates,

cofactors, solvent, etc.) after a prespecified number of design

iterations.

In the next section, we describe in detail the IPRO pro-

cedure and introduce the globally convergent mixed-integer

linear program that drives residue redesign. We also discuss

the methods used for generating and identifying hybrid

Escherichia coli/Baccilus subtilis dihydrofolate reductase

FIGURE 1 (a) Promising hybrid sequences from the

library are selected for downstream redesign that involves

either random or site-directed mutagenesis. (b) Illustration

of the upstream parental sequence redesign. Note that the

mutations in the parental sequences propagate downstream

into the combinatorial library effectively designing the com-

binatorial library at once, thereby improving the overall

quality of the library.
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(DHFR) and B. subtilis/Lactobacillus casei DHFR enzymes

containing single crossover positions and assays for DHFR

activity. Next, we provide an example application of IPRO to

highlight the features and type of output obtained with IPRO.

The study involves the computational identification of par-

ental redesigns that are likely to improve a single crossover

E. coli/B. subtilis DHFR combinatorial library composed of

16 hybrids (64). We conclude by discussing the implications

of our results and some of the modeling and algorithmic

enhancements that we are currently incorporating to further

improve the IPRO framework.

MATERIALS AND METHODS

The IPRO procedure

The IPRO procedure is composed of four parts (see Fig. 2):

a. A set of hybrid sequences matching the members of the combinatorial

library, if ,;100, is generated. For larger libraries, only a representative

sample of the diversity of the combinatorial library is considered.

b. For each hybrid sequence, an initial structure is computationally

generated. This is a critical step as the efficacy of the identified redesigns

depends heavily on the accuracy of the modeled structures.

c. A set of positions, ranging from a single residue position to the entire

sequence length, to be targeted for redesign is compiled. Note that the

larger the number of design positions is, the more expansive the search

space becomes leading to higher computational requirements. Typically

we only consider between 3 and 20 design positions that include residue

positions within or in the neighborhood of the active site. In addition,

restrictions on the type of allowable residue redesigns (e.g., hydrophobic,

charged, etc.) can be imposed for each redesign position.

d. Next, a set of residue changes is identified in the parental sequences,

which upon propagation among the combinatorial library members, lead

to the optimization of the average library score (e.g., binding energy or

stability (35–37)). This optimization step is carried out globally using a

MILP model within a local perturbation window, whereas simulated

annealing is used to accept or reject the residue redesigns associated with

each backbone perturbation step.

Generating a set of sequences representative
of the combinatorial library

A set of hybrid sequences is selected to exhaustively or statistically represent

the combinatorial library. This step begins with the sequence/structural

alignment (67) of the parental sequences. A statistical description of the

combinatorial library is obtained by considering the specifics of the com-

binatorialization protocol. For example, in case of DNA shuffling, models

such as eShuffle (68) or those developed by Maheshri and Schaffer (69) can be

used to estimate the library diversity. Alternatively, for an oligonucleotide

ligation-based protocol such as GeneReassembly (70), SISDC (71), and

degenerate homoduplex recombination (72), a statistically unbiased sample

of fragment concatenations is constructed that broadly captures the diversity

of the resulting combinatorial library. In the limiting case when there is only a

single starting sequence to be redesigned, IPRO reverts back to the traditional

single protein sequence design procedure. Note, however, that the concept of

designing for the optimum of the average of a library of sequences can also

find utility in this case when not a unique but rather an ensemble of putative

structures is available for the protein to be redesigned. The ensemble of

modeled structures then plays the role of the combinatorial library when fed to

IPRO. By optimizing with respect to the ensemble average of the putative

structures, a more robust redesign strategy is likely to be obtained.

Generation of starting hybrid protein structures

The initial putative structures of the hybrid proteins forming the library are

obtained by splicing fragments of the parental structures consistent with its

sequence (see Fig. 3). The coordinates of the fragment structures are taken

from the structural alignment of the parental sequences. The fold at the

junction point(s) typically involves a ‘‘kink’’ as a result of the ‘‘ad hoc’’

concatenation of the parental structures, which becomes even more prom-

inent in case of insertions. This is ‘‘smoothened’’ by allowing the backbone

around the junction point to move. The backbone f and c angles of seven

residues on either side of the crossover position(s) are allowed to vary and

their new positions are determined through energy minimization. In the

current implementation of IPRO, we use the CHARMM (73) energy func-

tion and molecular modeling environment. Note that during the energy

minimization, the bond lengths (b), bond angles (x1, x2, etc.), and internal

coordinates of the side chains are restrained to their original values (bo, xo)

by penalizing any deviations (see Eqs. 1 and 2). The bond stretching is

penalized using Hooke’s law formula (Eq. 1) and the distortions in the bond

angles are penalized using the harmonic function (Eq. 2). In addition,

distances between certain key atoms can also be restrained using Eq. 1. Note

that because less energy is required to distort an angle than to stretch a bond,

the force constant associated with bond angle distortion is accordingly

smaller:

DEbond len penalty ¼ +
bonds

1000ðb� boÞ2
kcal=mol Å

2

(1)

DEbond angle penalty ¼ +
angles

60ðx � xoÞ
2

kcal=mol rad
2
: (2)

Alternative methods to parental fragment splicing and relaxation for

modeling the hybrid structures include techniques such as homology

modeling (74,75) and ab initio structure prediction methods (75,76). After

FIGURE 2 Four key steps involved in the IPRO procedure. Details of

each of these steps are described separately in the text.
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the structure of the hybrid protein is modeled, the missing hydrogen atoms are

added to the hybrid protein in accordance with the standard procedure used in

CHARMM (31). Finally, the positions of the associated ligands are identified

using crystallographic data (whenever available) in conjunction with the

ZDOCK docking software (77,78). Notably the ZDOCK software allows for

the user-specified rough placement of the docked molecules, thus signifi-

cantly reducing the computational expense of the docking calculations.

Selecting design positions

The selection of the set of positions that will be allowed to mutate (i.e.,

candidate redesign positions) for each of the parental sequences is largely

dependent on the design objective and associated surrogate criterion.

Typically, design objectives involve one or more of the following: i), protein

stability, ii), binding affinity, iii), specific activity, and iv), substrate

specificity. Protein stability is associated with the ability of the protein to

fold correctly under a set of conditions. Generally, unfavorable interactions

present within the proteins such as the electrostatic repulsion, hydrogen

bond disruptions, steric clashes, or a combination of these tend to prevent

these proteins from folding correctly (63). A number of structure or sequence

data based (SCHEMA (79), SIRCH (65), and clashMaps (63)) and

functionality based (FamClash (64)) scoring strategies can be used to

quantify the extent of such unfavorable interactions in each hybrid. Residue

positions that participate in a disproportionate number of such clashing

interactions serve as design positions. On the other hand, when binding

affinity, specificity, or specific activity is the design objective, residues

within or in the neighborhood of the binding site are chosen as candidates

for design. In general, the design positions are either the clashing residues,

binding pocket residues, or a combination of both. In most cases, the set

of candidate design positions is subsequently revised (either upward or

downward) by using information, found in some cases in the literature, about

the direct or indirect impact of different residues on the presence, absence, or

extent of functionality.

Iterative protein optimization step

The optimization procedure of IPRO involves iterating between sequence

design, backbone optimization, and ligand redocking (see Fig. 4). This

iterative procedure involves six main steps as follows:

i. Backbone perturbation. Different backbone conformations are sam-

pled by iteratively perturbing small regions of the backbone that are

randomly chosen during each cycle along the length of the sequence

(N). For this purpose, a segment (from one to five contiguous residues

(k to k9) excluding prolines) of the protein sequence is randomly chosen

for perturbation. Because the special structure of proline makes the

polypeptide backbone more rigid, prolines, whenever present, are

considered part of the backbone. The f and c angles of the positions

within the perturbation window are perturbed by up to 65� from their

current values. The probability distribution of the perturbation

(between �5� and 15�) follows a Gaussian distribution with a mean

of zero and a standard deviation of 1.65�. This ensures that smaller

perturbations are chosen more often (64% chance that the perturbations

are between �1.65� and 11.65�) compared to larger ones that in most

cases are found to result in steric clashes. Note that the backbone

conformations of both parental and hybrid sequences are perturbed

during each cycle. Although the perturbation positions are the same for

every hybrid and parental sequences, the perturbation magnitude in the

backbone angles may vary. This allows different parental and hybrid

sequences to assume diverse backbone conformations to better

accommodate the differing side chains.

ii. Rotamer-rotamer/rotamer-backbone energy tabulations. Given the

backbone conformations determined in Step i and the rotamers and

rotamer combinations permitted at each position, this step involves the

calculation of the interaction energies of all rotamer-backbone and

rotamer-rotamer combinations within an interaction-dependent cutoff

distance (cutoff distance for van der Waals¼ 12 Å, hydrogen bond¼ 3

Å, and solvation ¼ 9 Å). This energy tabulation must be performed

separately for each hybrid and parental structure. The computational

expense is reduced by only updating the part of the tables that are

affected by the current perturbation. These values are then fed as

parameters to the side-chain/sequence optimization model.

FIGURE 3 This figure highlights the key steps for constructing the initial

structure of a hybrid protein from a set of parental structures with known

crossover position(s). These involve i), backbone splicing, ii), backbone

relaxation at the crossover positions, and iii), ligand redocking. These steps

are repeated for different crossover positions to generate the combinatorial

library.

FIGURE 4 IPRO is an iterative protein redesign software that includes the

following steps: i), A local region of the protein (1–5 consecutive residues as

shown in black circle) is randomly selected for perturbation. The backbone

torsion angles of these residues are perturbed by up to 65�. ii), All amino

acid rotamers consistent with these torsion angles are selected at each

position from the Dunbrack and Cohen rotamer library (86). Rotamer-

backbone and rotamer-rotamer energies are calculated for all the selected

rotamers using a suitable energy function (87). iii), A mixed-integer linear

programming formulation is used to select the optimal rotamer at each of

these positions such that the binding energy is minimized. iv), The backbone

of the protein is relaxed through energy minimization to allow it to adjust to

these new side-chains. v), The ligand position is readjusted with respect to

the modified backbone and side chains using the ZDOCK (78) docking

software. vi), The binding energy of the protein-ligand complex is evaluated

and the move is accepted or rejected using the Metropolis criterion.
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iii. Side-chain/sequence optimization. This step optimizes the amino

acid choices and conformations (rotamers) for the given backbone

structure over a 10–15 residue window that includes the perturbation

positions and five residue positions flanking it on either side (see Fig.

5). Specifically, the design positions within the perturbation region

are permitted to change amino acid type, whereas the flanking residue

positions (five residues on either side) can only change rotamers but

not the residue type. This entails two discrete decisions: 1), identifying

the choice of amino acid at any given position; and 2), selecting the

rotamer of the chosen amino acid that minimizes the selected sur-

rogate objective function. To model these discrete decisions, IPRO

draws upon the MILP optimization model formulations that use

binary variables to mathematically represent these discrete decisions.

For clarity of presentation, we will first describe the MILP formula-

tion for the special case, i.e., redesign of a single parental sequence. This

description will then serve as the starting point for the more general

combinatorial library design optimization formulation. In both cases, the set

of allowed side-chain conformations and amino acid choices at any position

is encoded within sets (Ri and Rih, respectively), where i denotes the residue

position and h denotes a hybrid sequence in the combinatorial library in case

of parental sequence redesign. Positions within the perturbation window but

outside the set of redesign candidates are restricted to the original amino acid

type but can change their rotamer state. All other residue positions outside

the perturbation window are fixed and cannot change either residue type or

rotamer. As expected, the parental sequence redesign problem is much more

complex than the single hybrid design. This is because a substituted residue

need not assume the same rotamer conformation in each library member. In

other words, the hybrids are ‘‘tied together’’ at the sequence level, but not

necessarily at the rotamer level. Starting with the simpler MILP formulation

for the design of a single hybrid sequence, we first outline the sets,

parameters, and variables used in the model as described below:

Sets

k; k9 2 f1; 2; . . . :;Ng ¼ set of starting and ending positions

for perturbation; k, k9

i; j 2 fk � 5; k � 4; . . . ; k; . . . ; k9; . . . ; k91 4; k91 5g ¼
set of positions for perturbation

r; s 2 f1; 2; . . . :;Rg ¼ set of rotamers

Ri ¼ set of rotamers available at position i:

Binary variables

Xir ¼
1; if rotamer r is selected at position i
0; otherwise:

�

Continuous variables

Zirjs ¼

1; if rotamers r;

s are selected simultaneously

at positions i; j; respectively

0; otherwise:

8>>><
>>>:

Parameters

Esb ¼ substrate-backbone energy

E
rb

ir ¼ rotamer-backbone energy of rotamer r at position i

E
rs

ir ¼ rotamer-substrate energy of rotamer r at position i

E
rr

irjs ¼ rotamer-rotamer energy of rotamers r; s

at positions i; j respectively:

Based on the above defined sets, variables, and parameters, the single

sequence design problem (SSDP) is implemented as the following MILP

formulation, which is a special case of the quadratic assignment problem

(80):

Minimize+
i

+
r

Xir3 E
rs

ir

� �
(3)

+
i

+
r

Xir3 Erb

ir 1Ers

ir

� �
1 +

i

+
j. i

+
r

+
s

Zirjs3Err

irjs 1Esb
#Ecutoff

(4)

+
r

Xir ¼ 1; " i; r 2 Ri (5)

Xir ¼ 0 " i; r such that E
rs

ir . di r 2 Ri (6)

Zirjs ¼ Xir3Xjs " i; r; j; s; r 2 Ri; s 2 Rj: (7)

The objective function (Eq. 3) here entails the minimization of the binding

score between the substrate and the protein as an example. The objective

function can be changed depending on the design requirements. In many

cases, (e.g., binding score) the objective function does not encode information

about the interactions in the entire protein. Therefore, the minimization step

may lead to mutations or rotamer changes that adversely affect the overall

stability of the protein. Constraint Eq. 4 is included to safeguard against this

by requiring that the total energy of the protein be below a prespecified cutoff

value, Ecutoff. The versatility of the adopted MILP modeling description

enables the incorporation of this explicit stability requirement that is absent in

most other frameworks proposed for protein design/redesign. In the same

FIGURE 5 Design positions within the perturbation region (shown in

orange) are permitted to change amino acid type, whereas the flanking residue

positions (five residues on either side shown in green) can only change

rotamers but not the residue type. Positions outside this 10–15 residue

window (gray) are fixed and cannot change either rotamer or residue type.
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spirit, additional energy-based requirements can be imposed to ensure, for

instance, retention of important hydrogen bonds between a donor and an

acceptor. Constraint Eq. 5 ensures that only one rotamer is selected at any

given position i along the sequence. Note that the rotamers may be that of the

original residue or of other residues, depending on whether or not position i is

a design position. Constraint Eq. 6 prevents any rotamers from being selected

at position i that have sufficiently high energy values ð.diÞ that preclude them

from the optimal solution. This rotamer elimination procedure formalizes the

‘‘background optimization’’ concept proposed by Looger and Hellinga (81)

and allows for eliminating rotamers that are guaranteed not to be part of the

optimal solution (see Looger and Hellinga (81) for details) . This concept

allows us to a priori trim down the search space and therefore reduces the

computational time. Constraint Eq. 7 determines which rotamers r and s are

simultaneously selected at positions i and j, respectively. This is encoded with

variable Zirjs, which is equal to one only if both variables Xir and Xjs are equal

to one. This implies thatZirjs is equal to the product of the two binary variables.

These nonlinear terms are then recast into an equivalent linear form by

summing Zirjs over s and r, respectively, as shown below:

+
s

Zirjs ¼ +
s

½Xir 3Xjs� ¼ Xir3+
s

½Xjs� ¼ Xir

"i; r; j. i; r 2 Ri; s 2 Rj: (8)

+
r

Zirjs ¼ +
r

½Xir 3Xjs� ¼ Xjs3+
r

½Xir� ¼ Xjs

"i; j. i; s; r 2 Ri; s 2 Rj (9)

0 # Zirjs # 1 "i; r; j. i; s; r 2 Ri; s 2 Rj: (10)

By replacing constraint Eq. 7 with constraints Eqs. 8–10, the linearity of

the SSDF formulation is preserved. The complete MILP formulation for

SSDP includes constraints Eqs. 3–10 excluding constraint Eq. 7.

Unlike the single sequence protein design formulation SSDP, the hybrid

library design problem (HLDP) involves the simultaneous optimization of the

hybrids (h) comprising the combinatorial library. Because the hybrid sequences

in the combinatorial library are derived from the parental sequences, their amino

acid composition must be restricted to the amino acid type present in the

corresponding parental sequences after the targeted mutations. To this end, we

introduce parameters ðvi9ap; aairhÞ that link the amino acid type a selected at a

given position i9 in parental sequence p to those present in the hybrid sequences

at the corresponding position i. In case of insertions and deletions, the positions i

and i9 in the hybrid and parental sequences, respectively, may not be the same.

Therefore, one needs to keep track of both the parental sequence p and what

position i9 in that sequence corresponds to a given position i in a hybrid sequence

h. Specifically, parameter vi9ap is equal to one if amino acidaoccurs at position i9

in parental sequence p, whereas parameter aairh stores the amino acid type of

rotamer r at position i in hybrid h. In addition, binary variable ðYiahÞ is

introduced and set to be equal to one if amino acid a is selected at position i in

hybrid sequence h. Unlike amino acid type changes, which are propagated

throughout the entire library, rotamer choices can differ between hybrid and/or

parental sequences. Thesenew complexities give rise to the followingadditional

sets, parameters, and variables definitions.

Sets

p 2 f1; 2; . . . ::Pg ¼ set of parental sequences

h 2 f1; 2; . . . :;Hg ¼ set of hybrids

i9 2 f1; 2; . . . :;Npg ¼ set of positions in parental sequence p

k; k9 2 f1; 2; . . . :;Nhg ¼ set of starting and ending positions

for perturbation in hybrid h; k, k9

i; j 2 fk � 5; k � 4; . . . ; k; . . . ; k9; . . . ; k91 4; k91 5g ¼
set of positions for perturbation in hybrid h

a 2 f1; 2; . . . ; 19g ¼ set of amino acids excluding proline

r; s 2 f1; 2; . . . :;Rg ¼ set of rotamers

Rih ¼ set of rotamers available at position i in hybrid h:

Binary variables

Xirh ¼
1; if rotamer r is selected at position i in hybrid h
0; otherwise:

�

Yiah ¼
1; if amino acid a is selected at position i in hybrid h
0; otherwise:

�

Continuous variables

Zirjsh ¼
1; if rotamers r; s are selected

at positions i; j in hybrid h

0; otherwise:

8><
>:

Parameters

E
sb

h ¼ substrate-backbone energy of hybrid h

E
rb

irh ¼ rotamer-backbone energy of rotamer r

at position i in hybrid h

E
rs

irh ¼ rotamer-substrate energy of rotamer r

at position i in hybrid h

E
rr

irjsh ¼ rotamer-rotamer energy of rotamers r;

s at positions i; j in hybrid h

aairh ¼ amino acid type of rotamer r at position i in hybrid h

vi9ap ¼
1; if amino acid a occurs at position i9
in parental sequence p
0; otherwise:

8<
:

By building on the SSDP formulation using the new additional sets,

variables, and parameters, the problem of parental sequence redesign and

associated HLDP is modeled as the following MILP formulation:

Minimize 1=H+
h

+
i

+
r

Xirh3ðErs

irhÞ (11)

+
h

+
i

+
r

Xirh3 Erb

irh 1Ers

irh

� ��

1 +
i

+
j. i

+
r

+
s

Zirjsh3E
rr

irjsh 1E
sb

h

)
#H:Ecutoff (12)

+
r

Xirh ¼ 1; " i; h; r 2 Rih (13)
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Xirh ¼ 0 " i; r; h such thatE
rs

irh . dih; r 2 Rih (14)

Zirjsh ¼ Xirh 3Xjsh " i; r; j; s; h; r 2 Rih; s 2 Rjh (15)

+
a

Yiah ¼ 1; "i; h; r 2 Rih (16)

Yiah ¼ +
r

Xirh " ði; a; hÞ such that aairh ¼ a; r 2 Rih (17)

Yiah ¼ vi9ap " i; h; k; p such that position i corresponds to

position i9 in the parental sequence p:

(18)

Slightly modified versions of constraints Eqs. 11–15 were also present in

the SSDP formulation. Briefly, constraint Eq. 11 is the objective function of

HLDP involving the minimization of the average surrogate score (e.g.,

binding energy) of the hybrids in the library. Constraint Eq. 12 ensures the

stability of the hybrid sequences in the library by imposing an energy cutoff.

Constraints Eqs. 13 and 14 ensure selection of only one rotamer r at any

given position i in any hybrid sequence h while eliminating any rotamers

with a high enough energy to preclude them from the optimal solution.

Equation 15 is identical to Eq. 7 in SSDP. Constraint Eq. 16 ensures that

only one amino acid type a is permitted at any given position i in a hybrid h.

Constraint Eq. 17 determines the amino acid type ðYiahÞ of the rotamer

selected at position i in a hybrid h. Finally, Eq. 18 ensures that amino acid

type a at position i in the hybrid sequence h is the same as the amino acid

type at position i9 in parental sequence p. This is in accordance with position

i of hybrid h being retained from position i9 of parental sequence p. Equation

15, as in the case of Eq. 7, involves the product of two binary variables. It is

exactly recast into a linear form in the same manner as shown below.

+
s

Zirjsh ¼ +
s

½Xirh3Xjsh� ¼ Xirh3+
s

½Xjsh� ¼ Xirh

"i; r; j. i; h; r 2 Rih; s 2 Rjh (19)

+
r

Zirjsh ¼ +
r

½Xirh3Xjsh� ¼ Xjsh3+
r

½Xirh� ¼ Xjsh

"i; j. i; s; h; r 2 Rih; s 2 Rjh (20)

0 # Zirjsh # 1 "i; r; j. i; s; h; r 2 Rih; s 2 Rjh: (21)

Formulation HLDP is composed of constraints Eqs. 11–21 excluding

constraint Eq. 15. We use the CPLEX MILP solver accessed through the

GAMS modeling environment to solve both SSPD and HLPD. This

optimization step is integrated with CHARMM using a FORTRAN 90

interface.

iv. Backbone relaxation. The optimization step described above may

lead to a number of new residues and/or rotamers for the hybrid

structures. These new side chains and/or conformations may no

longer be optimally interacting with the previous backbone. To

remedy this, a backbone relaxation step is included here allowing for

dihedral angles to vary, whereas the bond lengths and angles are

constrained to their original values using Eqs. 1 and 2. Note that each

hybrid structure undergoes a separate backbone relaxation procedure

to optimize the backbone conformation with respect to its associated

rotamers. Here the side-chain conformations are fixed while the

backbone torsion angles are optimized over the same 10–15 residue

window using the adopted basis-set Newton-Raphson algorithm

within CHARMM and the same energy function used for sequence

design (41). A maximum of 4000 steps are allotted for backbone

relaxation though energy minimization.

v. Ligand redocking. Because of the alterations in the backbone and the

change of rotamers/residue type, the location of the ligands may need

to be adjusted with respect to the new structure. Therefore, the

ligands are redocked separately for each of the hybrid and parental

sequences using the ZDOCK docking software (77,78). This

redocking step is performed only after a number of prespecified

design cycles to cut down on computational requirements. Tight

bounds are introduced into ZDOCK to constrain ligand placement in

only the relevant pocket or active site. The ligand redocking step

using the ZDOCK software is integrated with the backbone

relaxation and side-chain optimization steps using a FORTRAN

interface.

vi. Accepting/rejecting moves. After the redocking step, the average score

of the hybrid library is calculated and the perturbation imparted in Step i

is accepted or rejected on the basis of the difference between the final

and starting average scores according to the Metropolis criterion. We

have also experimented with a temperature-lowering schedule as it

pertains to simulated annealing without finding significant differences

in the results. The procedure is repeated for 200–10,000 iterations

depending on the complexity and size of the design study.

Upon completion, IPRO provides a set of low energy solutions and

associated mutations to be performed within the parental sequences whose

propagation to the hybrid library improves the average score of the library.

Due to the decomposable structure of the parental sequence redesign pro-

blem, most of the computation can be done in parallel with little information

cross-flow. Specifically, hybrid structure refinement, backbone relaxation,

backbone perturbation, calculation of rotamer-backbone and rotamer-

rotamer energies, and ligand docking for each hybrid are performed on

separate processors. After the rotamer-backbone and rotamer-rotamer energy

calculations for each hybrid, the information is fed as parameters to the

‘‘master’’ processor, which subsequently solves the MILP model (i.e., SSPD

or HLDP) to determine the optimal residues at each of the design positions in

the parental sequence(s). The choice of the residues/rotamers determined

using the MILP for each of the hybrids is then passed to the ‘‘slave’’ pro-

cessors for further backbone relaxation and ligand docking. All computa-

tional studies listed in this article were performed on a Linux PC cluster

using a 3.06GHz Xeon CPU/4GB RAM.

Hybrid construction and functional screening

Construction of DHFR hybrid libraries

Previously constructed plasmids pAZE-BE and pAZE-EB (64) were used in

this work to construct plasmids for the generation of the L. casei-B. subtilis

DHFR libraries in both orientations (pAZE-LB and pAZE-BL). First, the E.
coli DHFR fragments containing residues 1–120 and 31–159 were removed

from pAZE-EB and pAZE-BE plasmids by NdeI/BamHI and PstI/SpeI

restriction digests, respectively. The L. casei DHFR fragments 1–124 and

30–162 were obtained by NdeI/BamHI and PstI/SpeI restriction digests of

pAZE-EL and pAZE-LE plasmids (gift from Alex R. Horswill, University of

Iowa). The L. casei DHFR fragment 1–124 was then inserted into the cut

pAZE-EB by ligation, taking advantage of the complementary NdeI and

BamHI sites. Analogously, the L. casei DHFR fragment containing residues

30–162 was inserted into the cut pAZE-BE by ligation. Plasmids pAZE-LB

(L. casei residues 1–124-B. subtilis residues 31–159) and pAZE-BL (B.

subtilis residues 1–121-L. casei residues 30–162) were confirmed by se-

quencing at the Nucleic Acids Facility of The Pennsylvania State University.

To construct the hybrid libraries, plasmids pAZE-LB and pAZE-BL were

linearized at a unique SalI site between the L. casei and B. subtilis DHFR

fragments. Incremental truncation for the creation of hybrid enzymes

(ITCHY) method was used to construct libraries of hybrid L. casei-B.

subtilis DHFRs in both orientations (82). Libraries were transformed and

stored in E. coli strain DH5a.

Selection and determination of specific activities of active
DHFR hybrids

The plasmids containing the hybrid DHFR genes were purified and

electroporated into modified E. coli stain MH829, which has a deletion of
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DHFR (folA) gene. Transformed cells were washed twice in minimal media

A and plated on minimal media A agar plates supplemented with 0.5%

glycerol, 0.6 mM arginine, 50 mg/mL thymidine, 25 mg/mL kanamycin, 100

mg/mL ampicillin, 1 mM MgSO4, and 100 mM isopropyl b-D-thiogalactose.

The plates were allowed to grow for 5 days at room temperature and colonies

were picked and restreaked onto the same media and grown at 30�C for 24 h.

The selectants were sequenced at the Nucleic Acids Facility of The

Pennsylvania State University to identify crossover positions and confirm

the absence of insertions, deletions, or mutations.

The specific activities of hybrid DHFRs were determined in cell-free

lysates as previously described (64). Briefly, the plasmid pAZE was used to

express all DHFR hybrids. To increase expression levels, lacI gene was

destroyed on all plasmids by EcoRV and SfoI restriction digests. Plasmids

were transformed into the strain MH829, and 50 mL cultures were grown at

30�C in Luria Broth with 100 mg/mL ampicillin, 50 mg/mL thymidine, and

0.5 mM isopropyl b-D-thiogalactoside. Cultures were grown to OD600 of

1.0, centrifuged, washed with 25 ml of buffer (20 mM Tris, pH 7.7, 2 mM

DTT), and resuspended in 1 mL of buffer. The cells were broken by

sonication and insoluble material was removed by centrifugation. The

lysates were assayed at 25�C in MTAN buffer at pH 7.0 using the Cary 100

Bio UV-Vis spectrophotometer by Varian (Palo Alto, CA). Cell-free lysate

was preincubated with 100 mM cofactor NADPH and the reaction was

initiated by adding substrate dihydrofolate to 100 mM. Reaction progress

was monitored by following absorbance at 340 nm (NADPH absorbance

maximum) (De¼ 13,200 mM�1cm�1).

APPLICATION EXAMPLE

DHFR library characterization and analysis

The construction, identification, and characterization of the

above discussed sixteen E. coli/B. subtilis DHFR hybrids

were described previously (64). E. coli and B. subtilis
DHFRs share a 28% sequence identity at the protein level.

Below is discussed the isolation and characterization of 10 B.
subtilis/L. casei DHFR hybrids used here to validate the

computationally derived overall binding scores. The B.
subtilis/L. casei DHFR hybrid library was constructed from

the B. subtilis/L. casei DHFR pair sharing a 36% sequence

identity at the protein level. A previously developed (64)

genetic selection utilizing an E. coli strain containing a

complete deletion of chromosomal DHFR (folA) was used to

select hybrid enzymes with DHFR activity from the library.

For this reason, it was necessary to use inactive DHFR

fragments to make the ITCHY libraries, which limited the

crossover window to residues 31–121. The combined library

put through the selection included ;2.1 3 106 members.

There are (90 3 3)2 or 72,900 possible hybrid proteins. To

determine the number of library members that must be

examined for complete library coverage, the number of

hypothetical members is typically multiplied by 10. Since we

examined .729,000 members, complete library coverage

can be assumed. From the DHFR enzymes that passed the

selection, 40 hybrids were randomly chosen and sequenced.

Only two contained insertions; the remaining 38 were free of

insertions, deletions, and mutations. Ten out of 38 hybrids

were chosen for this study based on their even distribution of

crossover positions over the 90 amino acid crossover

position window (see Table 1). The crossover position in

the B. subtilis/L. casei hybrids is defined as the last residue

(by alignment position) of B. subtilis DHFR. It is clear from

the number of active DHFR hybrids identified that 36%

sequence identity on the amino acid level between two

DHFR proteins can be sufficient for the generation of active

hybrids.

Specific activities (mmol/min/mg) of theB. subtilis/L. casei
hybrid enzymes were measured to compare these values to the

overall binding scores obtained using the SSDP formulation.

Note that the listed specific activities are crude lysate ac-

tivities. This means that total lysates of cells expressing the

hybrid of interest, not the purified hybrids, are used in the

assays. Specific activity is the amount of product formed by an

enzyme in a given amount of time per milligram of enzyme.

Experimentally, specific activity here is the amount of co-

factor NADPH converted to NADP1 by a DHFR hybrid in

1 min per milligrams of total protein in the crude lysate. The

specific activities (mmol/min/mg) are quantified by measur-

ing the decrease in absorbance at 340 nm (NADPH absor-

bance maximum) during the enzymatic reaction to determine

how many mmoles of NADPH are converted to NADP1 per

minute using the extinction coefficient of NADPH (13,200

mM�1 cm�1). The resulting value is then divided by the mil-

ligrams of total protein in the crude lysate, which is deter-

mined by the colorimetric Bradford assay.

The B. subtilis/L. casei hybrids with the highest activities

were found to have crossover positions close to the N- or

C-terminus. These hybrid proteins consist mostly of one

DHFR (i.e., B. subtilis or L. casei) and have only a short

amino acid sequence replaced by the sequence of the other

TABLE 1 Crossover positions for the E. coli/B. subtilis

and B. subtilis/L. casei DHFR hybrids and their specific

activities (mmol/min/mg)

E. coli/B. subtilis B. subtilis/L. casei

Crossover position Specific activity Crossover position Specific activity

0 20.22 0 0.197 6 0.114

32 2.17 32 0.915 6 0.086

35 0.39 40 0.067 6 0.008

46 0.17 53 0.001 6 0.000

49 0.12 62 0.025 6 0.004

53 0.12 85 0.001 6 0.000

55 0.12 103 0.003 6 0.001

62 0.09 114 0.035 6 0.16

73 0.01 123 0.063 6 0.005

79 0.15 160 6.622 6 0.157

81 0.06

96 0.10

100 0.36

108 0.70

122 0.84

159 1.43

The errors in the specific activity for the B. subtilis/L. casei hybrids are

given at 95% confidence interval.

The crossover positions for the E. coli/B. subtilis and B. subtilis/L. casei

hybrids are defined as the last reside position (in alignment) of the E. coli

and B. subtilis DHFR sequences, respectively.
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DHFR at either the N- or the C-terminus. Consequently,

these hybrids have a relatively small number of new

interactions since a large percentage of the sequence is

retained from one species. The hybrids with the lowest

activities have their crossover positions in the central region

of the crossover position window, between amino acids 53

and 103. This region belongs to the adenosine binding

subdomain of DHFR, which is involved in binding of the

cofactor NADPH (83). These hybrids contain long sequence

fragments from both B. subtilis and L. casei DHFRs and are

thus expected to have many new interactions not present in

the wild-type proteins. Similar results were seen for the E.
coli/B. subtilis DHFR hybrids; the lowest specific activities

were found for the hybrids with crossover positions in the

central region consisting of amino acids 55–96.

IPRO analysis of DHFR libraries

In this section, we provide a step-by-step application of the

IPRO procedure, starting with the SSDP formulation, to test

whether it is feasible to improve the computationally derived

overall binding scores of two separate DHFR hybrid

systems: i), 16 E. coli/B. subtilis, and ii), 10 B. subtilis/L.
casei hybrid DHFR sequences. These results are contrasted

against the experimentally determined specific activity

values to check whether the trends observed for the specific

activity can be explained using the computed binding scores.

First we apply the SSDP formulation to individually design

each one of the 16 E. coli/B. subtilis DHFR hybrids con-

sidering two different sets of design positions followed by

the HLDP formulation, which is used to optimize the average

binding energy of the 16 E. coli/B. subtilis DHFR hybrids.

Starting with Step a, IPRO first generates the sequences

for the 16 E. coli/B. subtilis and 10 B. subtilis/L. casei DHFR

hybrids corresponding to the crossover positions shown in

Table 1. This simply involves splicing of the parental

sequence fragments consistent with the given crossover

positions. Putative structures for two different sets of DHFR

hybrids are generated as described in Step b. The alignment

of the parental structures required for this step is performed

using the combinatorial extension method (84). An approx-

imate structure of each of the hybrid sequences is constructed

by concatenating the corresponding parental structure frag-

ments obtained from the aligned structures. The structures of

the E. coli (PDB code: 1RX2) and L. casei (PDB code:

1AO8) parental sequences were obtained from the Protein

Data Bank (85), while the structure of the B. subtilis DHFR

was provided to us by Dr. Gregory A. Petsko at Brandeis

University (personal communication). Each one of these

putative structures was refined by allowing the backbone

around the junction point (14-residue window) to relax

through energy minimization, and subsequently the hydro-

gen atoms were added as described in Step b. Although no

residue changes are made, SSDP is used to drive side-chain

movements (rotamer changes and/or backbone relaxation)

for best binding. The optimized binding scores (kcal/mol) for

these hybrid sequences were then contrasted against the

experimentally measured specific activities (mmol/min/mg).

The specific activity values of the B. subtilis/L. casei and E.
coli/B. subtilis hybrids (64) are shown in Table 1. The

calculated binding scores in each case is found to be linearly

correlated to the natural log of the specific activities sug-

gesting that binding energy is a good predictor of specific

activity (see Fig. 6, a and b, corresponding to E. coli/B.
subtilis and B. subtilis/L. casei DHFR hybrid sequences re-

spectively). Specifically, 72.7% of the variance in the spe-

cific activity trend for the E. coli/B. subtilis DHFR hybrids

and 75.4% for the B. subtilis/L. casei DHFR hybrids is

explained by the log-linear relation with the binding scores.

The next step involves the redesign of each one of the

sixteen E. coli/B. subtilis DHFR hybrid sequences individ-

ually using SSDP formulation to enhance their computation-

ally derived binding energies. Two separate sets of design

positions were considered, as required in Step c, for mutation:

i), positions that were identified to be involved in clashes

(63,64), and ii), all residues within the binding pocket (i.e.,

within 4 Å distance from the substrate) that are likely to

contribute directly to the binding score. Clashing positions for

each one of the hybrid structures was determined using the

clashMap (63) and FamClash (64) procedures. Positions that

were frequently involved in clashes were identified and

FIGURE 6 Plot of the natural log of the specific activities against the

binding scores for two different types of DHFR hybrids (a) E. coli/B. subtilis
and (b) B. subtilis/L. casei. Along each point is shown the corresponding

hybrid sequence with its crossover position.
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considered for redesign. The same design positions were

considered for all the hybrid sequences to identify any

significant patterns in the residue substitutions. On average,

20 design positions were considered in either case, and each

run was submitted to an individual processor for a total of

1000 iterations for binding score minimization using SSDP.

Interestingly, out of 20 positions considered for redesign, we

found that only 7 positions (results shown in Table 2) are

mutated away from the wild-type. The maximum number of

mutations introduced in any one hybrid sequence did not

exceed four mutations (see Table 2). Notably, a number of

mutations are prevalent in all designs. Also many residues that

are within or close to the binding pocket persist at the wild-

type even though they are treated as design candidates.

Redesigning the clashing positions (a total of 17 positions)

provides approximately the same improvement (�6.9 kcal/

mol) in the average binding score as compared to designing

only the binding pocket residues (�6.2 kcal/mol) including

22 residues. This means that at least in this study, relieving

clashes can indirectly improve binding at the same extent as

active site residue redesign. The binding scores of the hybrid

sequences before and after design for the two set of design

positions are compared in Fig. 7, a and b, respectively.

Notably, when only clashing residue positions are consid-

ered for redesign, most of the improvement in the binding

scores of the hybrid sequences (average score, �149.0 kcal/

mol) is found to be the result of a single mutation in the B.
subtilis DHFR sequence fragment (S64R) and two mutations

in the E. coli sequence fragment (S64R and T68F). On the

other hand, when only binding pocket residues are consid-

ered for redesign, a single mutation in the E. coli (W30F) and

a single mutation in the B. subtilis (Y30F) DHFR sequence

fragments appear to contribute most to the improvement in

the binding score (average score, �148.3 kcal/mol). Not

surprisingly, these mutations are found to be consistently

occurring in the design of most of the hybrid sequences (see

Table 2). Many alternate mutations leading to the same

binding score improvement are found particularly for design

positions 65, 67, and 68 (see part b in Table 2).

TABLE 2 Individual redesigns of the (a) clashing positions

and (b) binding site residues for the E. coli/B. subtilis hybrid

DHFR sequences

(a) 30 62 63 96 97 98 103

B. sub Y V T G A Q L
E. coli W L S G G R F

0 F
33 F K
36 F Q
47 F

50 F K
54 F

56 F

62 F/A

73 F T K M
79 F

81 F

96 F

101 H K

109 H/F K

123 F Q L

160 F A K L

(b) 57 61 63 64 65 67 68

B. subt R V S S A D S
E. coli R I T S Q G T

0 T R R/Q R/D R/F
33 T R Q R E
36 R R/Q R/D R/Y
47 T R Q E Q
50 I K Q K R
54 R Q
56 N R K T Q
62 R H K D
73 K A R R Q

79 A R H F

81 A R R F

96 T R R/Q F

101 R R F

109 N R R F

123 R T Y

160 A R R F

The original B. subtilis and E. coli residues are shown in bold, and underlined,

respectively. Positions with consistent mutations are 30, 64, and 68 (for

crossovers after position 63). Note that position 0 corresponds to the B.

subtilis parental sequence, whereas 160 corresponds to E. coli sequence.

FIGURE 7 Binding score profile before and after redesign of the E. coli/B.

subtilis DHFR hybrids using the SSDP framework when (a) only clashing

residue positions are considered and (b) only binding pocket residues are

considered for redesign.

4176 Saraf et al.

Biophysical Journal 90(11) 4167–4180



The results highlighted above describe the application of

the SSDP optimization formulation, which enables the one-

by-one optimization of each one of the 14 hybrids. Note that

mutations predicted for the same position can vary for

different hybrids. Next, we describe the application of

HLDP, which unlike the SSDP formulation enforces the

same set of mutations for all hybrids. The objective here is to

contrast the overall results obtained from the two optimiza-

tion formulations. Both the clashing positions and residues

within the binding pocket are considered simultaneously.

The HLDP formulation was run on a 16-node Linux PC

cluster with 3.06 GHz Xeon CPU/4 GB RAM, with one node

assigned to each sequence (14 hybrid sequences and 2

parental sequences). One of these nodes served as the

‘‘master’’ node that solved the HLDP framework every

iteration. This procedure was run for a total of 48 h that

permitted on average 315 design iterations. The energy

profile of the library before and after the redesign of the

parental sequences is shown in Fig. 8. Note that even though

we obtained an improvement in the binding scores (see

Table 3) for all hybrid sequences, this may not always be the

case as the improvement in the average binding score of

the library may be in some cases due to a handful of hybrid

sequences. We find that the most prevalent mutations based

on the SSDP results are again present. HLDP identified

mutations at only three positions in the parental sequences

(positions 30, 64, and 68) that yielded an average binding

score of �149.0 kcal/mol. Notably, this is very close to the

average binding score of the library where each sequence is

individually redesigned. Whereas the upstream parental

redesign using HLDP requires in total only five mutations in

the parental sequences, the downstream hybrid sequence

design involves up to four different mutations for each hy-

brid sequence. This example, therefore, demonstrates that

upstream parental sequence redesign can indeed optimize all

resulting hybrids in one step in contrast to one-by-one

redesign of the hybrid sequences.

Examination of the resulting structures of the redesigned

sequences reveals that most of the improvement in the

average binding score of the library results from a new salt

bridge between the substituted arginine at position 64 and the

cofactor NADPH (Fig. 9 a). Moreover, substitution of

tyrosine and tryptophan at position 30 with a smaller

aromatic residue phenylalanine perhaps reduces steric hin-

drance with the substrate DHF (Fig. 9 b). We also find that

the designs identified using the IPRO procedure are consis-

tent with the residue types observed in the DHFR protein

family sequences (at position 30, F ¼ 15.73%; and at

position 64, R ¼ 57.98%). It is important to note that no

information of the protein family sequences was a priori

provided to the IPRO model.

SUMMARY AND DISCUSSION

In this article, we introduced the computational framework

IPRO for the computational design of protein combinatorial

libraries. IPRO identifies targeted mutations in the parental

sequences that when propagated in the combinatorial library

FIGURE 8 Binding score profile before and after redesign of parental

E. coli and B. subtilis DHFR sequences using the HLDP framework. Both

clashing residue positions and the binding pocket residues are considered for

design.

TABLE 3 Redesign of parental E. coli and B. subtilis DHFR

30 64 68

B. sub Y S S
E. coli W S T

0 F R
33 F R
36 F R
47 F R
50 F R
54 F R
56 F R
62 F R
73 F R F

79 F R F

81 F R F

96 F R F

101 F R F

109 F R F

123 F R F

160 F R F

FIGURE 9 (a) Substitution of serine with an arginine at position 64

stabilizes the binding with the cofactor NADPH due to formation of a new

salt bridge. (b) Substitution of tyrosine and tryptophan at position 30 with a

smaller aromatic residue phenylalanine perhaps reduces steric hindrance

with the substrate DHF.
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systematically optimizes a computationally accessible quan-

titative metric of library quality (e.g., stability, binding af-

finity, specific activity, etc.). A new design paradigm is thus

proposed that improves the entire library in one step instead

of ‘‘rescuing’’ individual hybrids one at a time. IPRO allows

for ligand redocking and backbone movement, whereas a

globally convergent MILP formulation drives side-chain

selection. Two separate MILP formulations (SSDP and

HLDP) are included in the IPRO procedure that allow for

both the downstream redesign of promising hybrids and the

upstream redesign of parental sequences, respectively. Six-

teen different E. coli/B. subtilis DHFR hybrids were com-

putationally redesigned individually, (i.e., one-by-one using

the SSDP formulation) and as well as in a single step through

parental sequence redesign (i.e., HLDP formulation). We

found similar improvements in the binding energy for both

cases, demonstrating the feasibility of redesigning combina-

torial libraries in a single step.

IPRO can thus be used to guide the design of a combina-

torial library in two ways: i), through formulation HDLP that

pinpoints a handful of mutations among the parental se-

quences before recombination, or ii), using formulation SSDP

that redesigns a single sequence at a time. By aggregating all

the mutations predicted by IPRO to improve your design

criterion, a combinatorial library can be constructed. The

current implementation of IPRO can only handle design

objectives exemplified by a single energy-based surrogate

function, (e.g., binding score as a measure of specific ac-

tivity). However, in many cases, library quality depends on

multiple, and sometimes competing, requirements. For ex-

ample, altering ligand (or substrate) specificity requires

redesigning the binding pocket to recognize the new ligand

but also eliminate any affinity for the old one(s). We are

working toward extending IPRO using a two-stage optimi-

zation procedure where the outer problem drives residue

mutations by minimizing the binging energy with respect to

the new ligand while the inner problem ensures that the new

design does not bind the old ligand(s) for any rotamer

combination. Although modifying an existing active site to

accommodate new interacting partners can be achieved by

targeted point mutations as described before, introducing a

completely new functionality in an existing protein scaffold

requires a new computational design paradigm. We are also

working toward extending IPRO procedure to allow for the

‘‘grafting’’ of binding sites from one protein to another.

Again, this leads to a nested optimization structure where the

outer problem performs active site geometry optimization

while the inner problem tests/prevents distortion of the grafted

binding site upon energy minimization.
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